2.已知集合A={x|-1≤x≤10},集合B={x|2x-6≥0}.
求∁R(A∪B);
已知C={x|a<x<a+1},且C⊆A,求實(shí)數(shù)a的取值范圍.

分析 根據(jù)題意化簡集合B,求出A∪B的補(bǔ)集∁R(A∪B),再根據(jù)C⊆A,列出不等式求出a的取值范圍.

解答 解:集合A={x|-1≤x≤10},集合B={x|2x-6≥0}={x|x≥3},
∴A∪B={x|-1≤x≤10};
∴∁R(A∪B)={x|x<-1或x>10};
又C={x|a<x<a+1},且C⊆A,
∴$\left\{\begin{array}{l}{a≥-1}\\{a+1≤10}\end{array}\right.$,
解得a的取值范圍是-1≤a≤9.

點(diǎn)評 本題考查了并集與補(bǔ)集以及子集的概念與運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在平行四邊形ABCD中,BD=4$\sqrt{3}$,PD⊥平面ABCD,平面PBC⊥平面PBD,二面角P-BC-D為60°
(1)求證:BC⊥BD;
(2)求點(diǎn)A到平面PBC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.對于兩個定義域均為D的函數(shù)f(x),g(x),若存在最小正實(shí)數(shù)M,使得對于任意x∈D,都有|f(x)-g(x)|≤M,則稱M為函數(shù)f(x),g(x)的“差距”,并記作||f(x),g(x)||.
(1)求f(x)=sinx(x∈R),g(x)=cosx(x∈R)的差距;
(2)設(shè)f(x)=$\sqrt{x}$(x∈[1,e${\;}^{\frac{a}{2}}$]),g(x)=mlnx(x∈[1,e${\;}^{\frac{a}{2}}$]).(e≈2.718)
①若m=2,且||f(x),g(x)||=1,求滿足條件的最大正整數(shù)a;
②若a=2,且||f(x),g(x)||=2,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D-ABC,如圖(b)所示.
(1)求證:BC⊥平面ACD; 
(2)求幾何體D-ABC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.冪函數(shù)y=f(x)的圖象經(jīng)過點(diǎn)(2,8),且滿足f(x)=64的x的值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)變量x,y滿足$\left\{\begin{array}{l}x+y≥4\\ y≥x\\ x≥1\end{array}\right.$,則z=2x+y有( 。
A.最小值3,最大值5B.最小值3,最大值6C.最小值5,最大值6D.以上都不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)=log3x+x-5的零點(diǎn)x0∈[a,b],且b-a=1,a,b∈N*,則a+b=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知x∈(-1,3),則函數(shù)y=(x-2)2的值域是( 。
A.(1,4)B.[0,9)C.[0,9]D.[1,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)α,β是兩個不同的平面,m,n是兩條不同的直線,有如下兩個命題:q:若m⊥α,n⊥β且m∥n,則α∥β;q:若m∥α,n∥β且m∥n,則α∥β.( 。
A.命題q,p都正確B.命題p正確,命題q不正確
C.命題q,p都不正確D.命題q不正確,命題p正確

查看答案和解析>>

同步練習(xí)冊答案