4.設(shè)U={n|n是小于9的正整數(shù)},A={n∈U|n是奇數(shù)},B={n∈U|n是3的倍數(shù)},則∁U(A∪B)=( 。
A.{2,4}B.{2,4,8}C.{3,8}D.{1,3,5,7}

分析 先求出滿足條件的全集U,進(jìn)而求出滿足條件的集合A與集合B,求出A∪B后,易根據(jù)全集U求出∁U(A∪B).

解答 解:∵U={n|n是小于9的正整數(shù)},
∴U={1,2,3,4,5,6,7,8},
則A={1,3,5,7},B={3,6},
∴A∪B={1,3,5,6,7},
∴∁U(A∪B)={2,4,8}.
故選:B.

點(diǎn)評(píng) 本題考查并集運(yùn)算和補(bǔ)集運(yùn)算,運(yùn)算的關(guān)鍵是準(zhǔn)確列舉出滿足條件的集合,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.某學(xué)校為了了解學(xué)生使用手機(jī)的情況,分別在高一和高二兩個(gè)年級(jí)各隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.如圖表是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均使用手機(jī)時(shí)間的頻率分布直方圖和頻數(shù)分布表,將使用手機(jī)時(shí)間不低于80分鐘的學(xué)生稱(chēng)為“手機(jī)迷”.
高二學(xué)生日均使用手機(jī)時(shí)間的頻數(shù)分布表
時(shí)間分組頻數(shù)
[0,20)12
[20,40)20
[40,60)24
[60,80)26
[80,100)14
[100,120)4
(1)將頻率視為概率,估計(jì)哪個(gè)年級(jí)的學(xué)生是“手機(jī)迷”的概率大?請(qǐng)說(shuō)明理由.
(2)在高一的抽查中,已知隨機(jī)抽到的女生共有55名,其中10名為“手機(jī)迷”.根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷是否有90%的把握認(rèn)為“手機(jī)迷”與性別有關(guān)?說(shuō)明理由.
非手機(jī)迷手機(jī)迷合計(jì)
合計(jì)
附:隨機(jī)變量${k^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d為樣本總量).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知數(shù)列{an}滿足an=$\frac{2n+4}{3}$,若從{an}中提取一個(gè)公比為q的等比數(shù)列{a${\;}_{{k}_{n}}$},其中k1=1,且k1<k2<…<kn,kn∈N*,則滿足條件的最小q的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.設(shè)a∈R,集合A=R,B={x∈R|(a-2)x2+2(a-2)x-3<0}.
(1)若a=3,求集合B(用區(qū)間表示);
(2)若A=B,求實(shí)數(shù)的a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=$\frac{1}{2}$x2-2ax+4lnx.
(1)求函數(shù)f(x)的極值點(diǎn);
(2)若函數(shù)f(x)在區(qū)間[2,6]內(nèi)有極值,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)全集為實(shí)數(shù)集R,A={x|3≤x<7},B={x|$\frac{1}{4}$≤2x≤8},C={x|x<a}.
(1)求∁R(A∪B)
(2)如果A∩C≠∅,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知M是△ABC內(nèi)的一點(diǎn),且$\overrightarrow{AB}$•$\overrightarrow{AC}$=2$\sqrt{3}$,∠BAC=30°,若△MBC,△MAB、△MCA的面積分別為$\frac{1}{2}$,x,y,則$\frac{1}{x}$+$\frac{4}{y}$的最小值是( 。
A.9B.16C.18D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在某籃球比賽中,根據(jù)甲和乙兩人的得分情況得到如圖所示的莖葉圖.

(1)從莖葉圖的特征來(lái)說(shuō)明他們誰(shuí)發(fā)揮得更穩(wěn)定;
(2)用樣本的數(shù)字特征驗(yàn)證他們誰(shuí)發(fā)揮得更好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知直線l的參數(shù)方程是$\left\{{\begin{array}{l}{x=2+t}\\{t=-1+\sqrt{3}t}\end{array}}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程是ρ=2sinθ+4cosθ.
(1)求曲線C的直角坐標(biāo)方程和參數(shù)方程;
(2)求直線l被曲線C截得的弦長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案