5.若“?x∈[0,$\frac{π}{3}}$],tanx<m”是假命題,則實數(shù)m的最大值為$\sqrt{3}$.

分析 把“?x∈[0,$\frac{π}{3}$],tanx<m”為假命題,轉(zhuǎn)化為“?x∈[0,$\frac{π}{3}}$],tanx≥m”是真命題,由此求出實數(shù)m的最大值.

解答 解:“?x∈[0,$\frac{π}{3}$],tanx<m”為假命題,
可得“?x∈[0,$\frac{π}{3}}$],tanx≥m”是真命題;
又x∈[0,$\frac{π}{3}$]時,0≤tanx≤$\sqrt{3}$,
∴m≤$\sqrt{3}$,
即實數(shù)m的最大值為$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 本題考查函數(shù)最值的應(yīng)用問題,也考查了全稱命題與特稱命題的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}^{2}}{t{a}_{n}+2}$
(Ⅰ)若t=0,求數(shù)列{an}的通項公式;
(Ⅱ)若t=1,求證:$\frac{2}{3}≤\frac{2{a}_{1}}{{a}_{1}+2}+\frac{4{a}_{2}}{{a}_{2}+2}+\frac{6{a}_{3}}{{a}_{3}+2}+…+\frac{2n{a}_{n}}{{a}_{n}+2}<\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知平面向量$\overrightarrow a$=(1,2),$\overrightarrow b$=(-2,m),且$\overrightarrow a$∥$\overrightarrow b$,則實數(shù)m的值為( 。
A.1B.-4C.-1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖所示,在△ABC中,B=$\frac{π}{4}$,AC=2$\sqrt{5}$,cosC=$\frac{{2\sqrt{5}}}{5}$.
(1)求sin∠BAC的值及BC的長度;
(2)設(shè)BC的中點為D,求中線AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在等差數(shù)列{an}中,公差為d≠0,a1=2且a5是a3與a8的等比中項.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{1}{({a}_{n}-1){a}_{n}}$,求數(shù)列{bn}的前2016項的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.f(x)=$\frac{1}{2}$(sinx+cosx+|sinx-cosx|)的值域是(  )
A.[-1,1]B.[-$\frac{1}{2}$,$\frac{1}{2}$]C.[-$\frac{{\sqrt{2}}}{2}$,1]D.[-1,$\frac{{\sqrt{2}}}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在△ABC中,∠B=30°,∠BAC=90°,AD⊥BC于D.現(xiàn)將△ACD沿直線AD旋轉(zhuǎn)一周,則在旋轉(zhuǎn)過程中,直線AC與直線BD所成角的取值范圍是(60°,90°).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.在平面直角坐標(biāo)xOy中,設(shè)圓M的半徑為1,圓心在直線2x-y-4=0上,若圓M上不存在點N,使NO=$\frac{1}{2}$NA,其中A(0,3),則圓心M橫坐標(biāo)的取值范圍(-∞,0)∪($\frac{12}{5}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.“x2≥1”是“x>1”的(  )
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

同步練習(xí)冊答案