分析 (1)先根據(jù)題意先表示出點(diǎn)P受光源A的照度和受光源B的照度再根據(jù)光源A與光源B在點(diǎn)P產(chǎn)生相等的照度建立方程,即可求點(diǎn)P的“總照度”I(x)的函數(shù)表達(dá)式;
(2)利用導(dǎo)數(shù)先研究函數(shù)的極值,然后根據(jù)函數(shù)的單調(diào)性求出函數(shù)的最小值即可.
解答 解:(1)由題意知,若a=8,b=1,d=3,則點(diǎn)P受光源A的照度為k•$\frac{8}{{x}^{2}}$,
受光源B的照度為k•$\frac{1}{(3-x)^{2}}$;
點(diǎn)P的“總照度”I(x)=k•$\frac{8}{{x}^{2}}$+k•$\frac{1}{(3-x)^{2}}$,(0<x<3);
(2)I′(x)=k•[-$\frac{16}{{x}^{3}}$+$\frac{2}{(3-x)^{3}}$]=k•$\frac{18(x-2)({x}^{2}-6x+12)}{{x}^{3}(3-x)^{3}}$,
令I(lǐng)′(x)=0,解得:x=2,
列表:
x | (0,2) | 2 | (2,3) |
I′(x) | - | 0 | + |
I(x) | 減 | 極小值 | 增 |
點(diǎn)評(píng) 本題主要考查了函數(shù)模型的選擇與應(yīng)用,同時(shí)考查了函數(shù)的最值的求解,導(dǎo)數(shù)法求函數(shù)最值是常用的方法,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{π}{3}$,π) | B. | ($\frac{π}{3}$,π] | C. | [$\frac{π}{3}$,π] | D. | (0,$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${\overline{x}}_{1}$>${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$ | B. | ${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$>${s}_{2}^{2}$ | ||
C. | ${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$=${s}_{2}^{2}$ | D. | ${\overline{x}}_{1}$=${\overline{x}}_{2}$,s${\;}_{1}^{2}$<${s}_{2}^{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com