A. | 定義域是[-1,1] | B. | f(x)是奇函數(shù) | ||
C. | 值域是[-tan1,tan1] | D. | 在(-$\frac{π}{2}$,$\frac{π}{2}$)上單調(diào)遞增 |
分析 運(yùn)用正切函數(shù)的性質(zhì)和余弦函數(shù)的性質(zhì),結(jié)合奇偶性的定義和復(fù)合函數(shù)的單調(diào)性,即可判斷
解答 解:函數(shù)f(x)=tan(cosx),
由于-1≤cosx≤1,函數(shù)有意義,則定義域?yàn)镽,則A錯(cuò);
由于[-1,1]⊆(-$\frac{π}{2}$,$\frac{π}{2}$),
由正切函數(shù)的單調(diào)性,可得tan(-1)≤f(x)≤tan1,
即有值域?yàn)閇-tan1,tan1],則C對(duì);
由于定義域?yàn)镽,則f(-x)=tan(cos(-x))=tan(cosx)=f(x),
即有f(x)為偶函數(shù),則B錯(cuò);
在(-$\frac{π}{2}$,0)上,y=cosx遞增,則y=tan(cosx)遞增;
則在(0,$\frac{π}{2}$)上單調(diào)遞減.則D錯(cuò).
故選C.
點(diǎn)評(píng) 本題考查正切函數(shù)和余弦函數(shù)的性質(zhì),考查復(fù)合函數(shù)的單調(diào)性:同增異減,屬于中檔題和易錯(cuò)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | πa2 | B. | 2πa2 | C. | 3πa2 | D. | 12πa2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com