2.P是橢圓C:$\frac{x^2}{4}+{y^2}$=1上的動點,以P為切點作橢圓C的切線l,交圓x2+y2=4于A,B兩點,當△ABO的面積最大時,直線l的斜率k=( 。
A.±1B.$±\sqrt{2}$C.$±\frac{{\sqrt{2}}}{2}$D.$±\sqrt{3}$

分析 由題意可設(shè)直線l的方程為:y=kx+m,A(x1,y1),B(x2,y2).可得原點O到AB的距離d.|AB|=2$\sqrt{{R}^{2}-mq0ogsa^{2}}$,可得S△OAB=$\frac{1}{2}$d|AB|=$\frac{|m|\sqrt{4(1+{k}^{2})-{m}^{2}}}{1+{k}^{2}}$.直線l的方程與題意方程聯(lián)立化為:(1+4k2)x2+8kmx+4m2-4=0,由△=0,可得m2=4k2+1.可得S△OAB=$\frac{\sqrt{3}\sqrt{1+4{k}^{2}}}{1+{k}^{2}}$,令1+k2=t≥1.再利用二次函數(shù)的單調(diào)性即可得出.

解答 解:由題意可設(shè)直線l的方程為:y=kx+m,A(x1,y1),B(x2,y2).
則原點O到AB的距離d=$\frac{|m|}{\sqrt{1+{k}^{2}}}$.
∴|AB|=2$\sqrt{{R}^{2}-qaku8gk^{2}}$
∴S△OAB=$\frac{1}{2}$d|AB|=$\frac{1}{2}$×$\frac{|m|}{\sqrt{1+{k}^{2}}}$×$\frac{2\sqrt{4(1+{k}^{2})-{m}^{2}}}{\sqrt{1+{k}^{2}}}$=$\frac{|m|\sqrt{4(1+{k}^{2})-{m}^{2}}}{1+{k}^{2}}$.
聯(lián)立$\left\{\begin{array}{l}{y=kx+m}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,化為:(1+4k2)x2+8kmx+4m2-4=0,
∵△=64k2m2-16(1+4k2)(m2-1)=0,∴m2=4k2+1.
∴S△OAB=$\frac{\sqrt{3}\sqrt{1+4{k}^{2}}}{1+{k}^{2}}$,令1+k2=t≥1.
則S△OAB=$\sqrt{-9(\frac{1}{t}-\frac{2}{3})^{2}+4}$≤2,
當且僅當t=$\frac{3}{2}$=1+k2,解得k=$±\frac{\sqrt{2}}{2}$時取等號.
∴直線l的斜率為:$±\frac{\sqrt{2}}{2}$.
故選:C.

點評 本題考查了橢圓的定義標準方程及其性質(zhì)、直線與相交弦長問題、二次函數(shù)的性質(zhì)、點到直線的距離公式,考查了推理能力與計算能力,屬于難題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.已知函數(shù)f(x)=loga(x2-ax+$\frac{2a}{3}$)在x∈(-∞,1]上為單調(diào)函數(shù),求實數(shù)a的取值范圍,并判斷f(x)在x∈
(-∞,1]上為是增函數(shù)還是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知集合A={直線|直線l的方程是(3m+1)x+(1-m)y-2-2m=0},集合B={直線|直線l是y=x3的切線},則A∩B=( 。
A.{(x,y)|3x-y-2=0}B.{(1,1)}C.{(x,y)|3x-4y+1=0}D.{(x,y)|x-y=0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.已知f(x)=$\frac{|x|}{{e}^{x}}$(x∈R),若關(guān)于x的方程f2(x)-kf(x)+k-1=0恰好有4個不相等的實數(shù)根,則實數(shù)k的取值范圍為$({1,1+\frac{1}{e}})$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.定義運算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,設(shè)函數(shù)$y=f(x)=|{\begin{array}{l}{sinx}&{\sqrt{3}}\\{cosx}&1\end{array}}|$,將函數(shù)y=f(x)向左平移m(m>0)個單位長度后,所得到圖象關(guān)于y軸對稱,則m的最小值是$\frac{5π}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=lg$\frac{1+x}{1-x}$.
(1)判斷f(x)奇偶性和單調(diào)性,并求出f(x)的單調(diào)區(qū)間
(2)設(shè)h(x)=$\frac{1}{x}$-f(x),求證:函數(shù)y=h(x)在區(qū)間(-1,0)內(nèi)必有唯一的零點t,且-1<t<-$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.某單位有工程師6人,技術(shù)員12人,技工18人,要從這些人中抽取一個容量為n的樣本.如果采用系統(tǒng)抽樣法和分層抽樣法抽取,不用剔除個體;如果樣本容量增加一個,則在采用系統(tǒng)抽樣時,需要在總體中先剔除1個個體.則樣本容量n=6,其中工程師晏某被抽中的概率為$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.以下所示幾何體中是棱柱的有①③⑤(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.在數(shù)列{an}中,a1=1,an+2+(-1)nan=1.記Sn是數(shù)列{an}的前n項和,則S200=5100.

查看答案和解析>>

同步練習冊答案