4.已知函數(shù)f(x)=a|x-1|-|x+1|.其中a>1
(Ⅰ)當(dāng)a=2時(shí),求不等式f(x)≥3的解集;
(Ⅱ)若函數(shù)y=f(x)的圖象與直線y=1圍成三角形的面積為$\frac{27}{8}$,求實(shí)數(shù)a的值.

分析 (Ⅰ)求出函數(shù)f(x)的分段函數(shù)的形式,得到關(guān)于x的不等式組,解出即可;
(Ⅱ)由f(x)=1,求出交點(diǎn)的橫坐標(biāo),求出三角形的底,根據(jù)三角形的面積求出a的值即可.

解答 解:(Ⅰ)由條件f(x)=$\left\{\begin{array}{l}{(1-a)x+a+1,x<-1}\\{-(a+1)x+a-1,-1≤x≤1}\\{(a-1)x-a-1,x>1}\end{array}\right.$,
a=2時(shí),f(x)≥3?$\left\{\begin{array}{l}{x<-1}\\{-x+3≥3}\end{array}\right.$或$\left\{\begin{array}{l}{-1≤x≤1}\\{-3x+1≥3}\end{array}\right.$或$\left\{\begin{array}{l}{x>1}\\{x-3≥3}\end{array}\right.$
?x<-1或-1≤x≤-$\frac{2}{3}$或x≥6,
故不等式f(x)≥3的解集是(-∞,-$\frac{2}{3}$]∪[6,+∞);
(Ⅱ)由(Ⅰ)知,f(x)=1⇒x1=$\frac{a-2}{a+1}$,x2=$\frac{a+2}{a-1}$,
三角形的面積S=$\frac{1}{2}$•($\frac{a+2}{a-1}$-$\frac{a-2}{a+1}$)•3=$\frac{9a}{{a}^{2}-1}$=$\frac{27}{8}$,
解得:a=3或a=-$\frac{1}{3}$,
∵a>1
∴a=-$\frac{1}{3}$不符合題意
∴a=3
故所求a的值是3.

點(diǎn)評(píng) 本題考查了解絕對(duì)值不等式問題,考查分類討論思想以及轉(zhuǎn)化思想,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.對(duì)某地區(qū)兒童的身高與體重的一組數(shù)據(jù),我們用兩種模型①y=bx+a,②y=cedx擬合,得到回歸方程分別為${\widehaty^{(1)}}=0.24x-8.81$,${\widehaty^{(2)}}=1.70{e^{0.022x}}$,作殘差分析,如表:
身高x(cm)60708090100110
體重y(kg)6810141518
${\widehate^{(1)}}$0.410.011.21-0.190.41
${\widehate^{(2)}}$-0.360.070.121.69-0.34-1.12
(Ⅰ)求表中空格內(nèi)的值;
(Ⅱ)根據(jù)殘差比較模型①,②的擬合效果,決定選擇哪個(gè)模型;
(Ⅲ)殘差大于1kg的樣本點(diǎn)被認(rèn)為是異常數(shù)據(jù),應(yīng)剔除,剔除后對(duì)(Ⅱ)所選擇的模型重新建立回歸方程.
(結(jié)果保留到小數(shù)點(diǎn)后兩位)
附:對(duì)于一組數(shù)據(jù)(x1,y1),(x2,y2),…(xn,yn),其回歸直線y=bx+a的斜率和截距的最小二乘法估計(jì)分別為$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+1,0≤x≤1\\ \frac{1}{2}sin({\frac{π}{4}x})+\frac{3}{2},1<x≤4\end{array}\right.$,若不等式f2(x)-af(x)+2<0在x∈[0,4]上恒成立,則實(shí)數(shù)a取值范圍是(  )
A.$a>2\sqrt{2}$B.$2\sqrt{2}<a<3$C.a>3D.$3<a<2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知i是虛數(shù)單位,若復(fù)數(shù)z滿足z2=-4,則$\frac{1}{z}$=( 。
A.-$\frac{1}{2}$B.-$\frac{1}{2}$iC.$±\frac{1}{2}$D.$±\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x+2,x<0}\\{3x-1,x≥0}\end{array}\right.$,則f[f(-1)]=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知F點(diǎn)為雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)焦點(diǎn),以點(diǎn)F為圓心的圓于C的漸近線相切,且與C交于A,B兩點(diǎn),若AF⊥x軸,則C的離心率為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=1,則下列關(guān)系可以成立的而是( 。
A.($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$B.($\overrightarrow{a}$-$\overrightarrow$)⊥($\overrightarrow{a}$+$\overrightarrow$)C.($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow$D.($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.《算學(xué)啟蒙》值中國元代數(shù)學(xué)家朱世杰撰寫的一部數(shù)學(xué)啟蒙讀物,包括面積、體積、比例、開方、高次方程等問題,《算學(xué)啟蒙》中有關(guān)于“松竹并生”的問題:“松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等”,如圖是源于其思想的一個(gè)程序框圖,若輸入a,b分別為8,2,則輸出的n等于( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知如圖所示的程序框圖的輸入值x∈[-1,4],則輸出y值的取值范圍是( 。
A.[0,2]B.[-1,2]C.[-1,15]D.[2,15]

查看答案和解析>>

同步練習(xí)冊(cè)答案