【題目】如圖,在四棱錐中,底面為邊長為2的菱形,,,面面,點為棱的中點.
(1)在棱上是否存在一點,使得面,并說明理由;
(2)當二面角的余弦值為時,求直線與平面所成的角.
【答案】(1)見解析;(2).
【解析】試題分析:(1)取的中點,連結、,可證,四邊形為平行四邊形.
則,又平面,平面,所以,平面.故在棱上存在點,使得面,點為棱的中點.
(2)可證面,故以為坐標原點建立如圖空間坐標系,求出相應點及相應向量的坐標可求直線與平面所成的角.
(1)在棱上存在點,使得面,點為棱的中點.
理由如下:
取的中點,連結、,
由題意,且,且,
故且.
所以,四邊形為平行四邊形.
所以,,又平面,平面,
所以,平面.
(2)由題意知為正三角形,所以,亦即,
又,
所以,且面面,面面,
所以面,故以為坐標原點建立如圖空間坐標系,
設,則由題意知,,,,
,,
設平面的法向量為,
則由得,
令,則,,
所以取,
顯然可取平面的法向量,
由題意: ,所以.
由于面,所以在平面內(nèi)的射影為,
所以為直線與平面所成的角,
易知在中,從而,
所以直線與平面所成的角為.
科目:高中數(shù)學 來源: 題型:
【題目】(1)如圖(1)所示,橢圓的中心在原點,焦點F1、F2在x軸上,A、B是橢圓的頂點,P是橢圓上一點,且PF1⊥x軸,PF2∥AB,求此橢圓的離心率;
(2)如圖(2)所示,雙曲線的一個焦點為F,虛軸的一個端點為B,如果直線FB與該雙曲線的一條漸近線垂直,求此雙曲線的離心率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
(1) 求函數(shù)的反函數(shù);
(2)試問:函數(shù)的圖象上是否存在關于坐標原點對稱的點,若存在,求出這些點的坐標;若不存在,說明理由;
(3)若方程的三個實數(shù)根滿足: ,且,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正三棱柱ABC-A1B1C1的所有棱長都為2,D為CC1中點.
(1)求證:AB1⊥平面A1BD;
(2)求銳二面角A-A1D-B的余弦值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù),且的圖像在y軸右側(cè)的第一個最高點的橫坐標為.
(1)求的值;
(2)已知在區(qū)間上的最小值為1,求a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】張先生2018年年底購買了一輛排量的小轎車,為積極響應政府發(fā)展森林碳匯(指森林植物吸收大氣中的二氧化碳并將其固定在植被或土壤中)的號召,買車的同時出資1萬元向中國綠色碳匯基金會購買了 2畝荒山用于植樹造林.科學研究表明:轎車每行駛3000公里就要排放1噸二氧化碳,林木每生長1立方米,平均可吸收1.8噸二氧化碳.
(1)若張先生第一年(即2019年)會用車1.2萬公里,以后逐年増加1000公里,則該轎車使用10年共要排放二氧化碳多少噸?
(2)若種植的林木第一年(即2019年)生長了1立方米,以后每年以10%的生長速度遞增,問林木至少生長多少年,吸收的二氧化碳的量超過轎車使用10年排出的二氧化碳的量(參考數(shù)據(jù):,,)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】“雙十一網(wǎng)購狂歡節(jié)”源于淘寶商城(天貓)年月日舉辦的促銷活動,當時參與的商家數(shù)量和促銷力度均有限,但營業(yè)額遠超預想的效果,于是月日成為天貓舉辦大規(guī)模促銷活動的固定日期.如今,中國的“雙十一”已經(jīng)從一個節(jié)日變成了全民狂歡的“電商購物日”.某淘寶電商為分析近年“雙十一”期間的宣傳費用(單位:萬元)和利潤(單位:十萬元)之間的關系,搜集了相關數(shù)據(jù),得到下列表格:
(萬元) | ||||||||
(十萬元) |
(1)請用相關系數(shù)說明與之間是否存在線性相關關系(當時,說明與之間具有線性相關關系);
(2)建立關于的線性回歸方程(系數(shù)精確到),預測當宣傳費用為萬元時的利潤.
附參考公式:回歸方程中和最小二乘估計公式分別為
,,相關系數(shù)
參考數(shù)據(jù):,,,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com