12.一個(gè)化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲種肥料的主要原料是磷酸鹽4t,硝酸鹽18t,可獲利10000元,生產(chǎn)一車皮乙種肥料所需的主要原料是磷酸鹽是1t,硝酸鹽15t,可獲利5000元,現(xiàn)庫(kù)存磷酸鹽15t,硝酸鹽66t,則安排甲、乙兩種肥料的生產(chǎn)分別是多少時(shí),才能獲得的最大利潤(rùn)(  )
A.-3,1B.2,2C.2,1D.1,3

分析 先設(shè)x、y分別為計(jì)劃生產(chǎn)甲、乙兩種混合肥料的車皮數(shù),根據(jù)題意列出約束條件,再利用線性規(guī)劃的方法求解最優(yōu)解即可.

解答 解:設(shè)x、y分別為計(jì)劃生產(chǎn)甲、乙兩種混合肥料的車皮數(shù),于是滿足以下條件:$\left\{\begin{array}{l}{4x+y≤10}\\{18x+15y≤66}\\{x≥0}\\{y≥0}\\{x,y∈Z}\end{array}\right.$;
再設(shè)分別生產(chǎn)甲、乙兩種肥料各x、y車皮產(chǎn)生
的利潤(rùn)為z=10000x+5000y=5000(2x+y),
由$\left\{\begin{array}{l}{4x+y=10}\\{18x+15y=66}\end{array}\right.$得兩直線的交點(diǎn)M(2,2).
令t=2x+y,當(dāng)直線L:y=-2x+t經(jīng)過點(diǎn)M(2,2)時(shí),它在y軸上的截距有最大值為6,此時(shí)z=30000.
∴分別生產(chǎn)甲、乙兩種肥料各為2,2車皮,能夠產(chǎn)生最大利潤(rùn),最大利潤(rùn)是30000t.
故選:B.

點(diǎn)評(píng) 利用線性規(guī)劃知識(shí)解決的應(yīng)用題.新高考中的重要的理念就是把數(shù)學(xué)知識(shí)運(yùn)用到實(shí)際生活中,如何建模是解決這類問題的關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-xex-1.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)方程2x|lnx|=1有兩個(gè)不等的實(shí)根x1和x2,則( 。
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.某食品廠為了促銷,制作了3種不同的精美卡片,每袋食品中隨機(jī)裝入一張卡片,集齊3種卡片可獲獎(jiǎng),現(xiàn)購(gòu)買該食品4袋,能獲獎(jiǎng)的概率為( 。
A.$\frac{4}{27}$B.$\frac{8}{27}$C.$\frac{4}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.將2本相同的小說,2本相同的畫冊(cè)全部分給3名同學(xué),每名同學(xué)至少1本,則不同的分法有(  )
A.6B.9C.12D.15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.設(shè)m∈R,過定點(diǎn)A的動(dòng)直線x+my=0和過定點(diǎn)B的動(dòng)直線mx-y-m+3=0交于點(diǎn)P(x,y),則|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|的最大值為5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知$\overrightarrow{a}$=(m,1),$\overrightarrow$=(2,-1),若$\overrightarrow{a}$∥($\overrightarrow$-$\overrightarrow{a}$),則實(shí)數(shù)m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知直線l1:4x-3y+6=0和直線l2:x=-$\frac{p}{2}$(p>0).若拋物線C:y2=2px上的點(diǎn)到直線l1和直線l2的距離之和的最小值為2.
(I)求拋物線C的方程;
(II)若以拋物線上任意一點(diǎn)M為切點(diǎn)的直線l與直線l2交于點(diǎn)N,試問在x軸上是否存在定點(diǎn)Q,使Q點(diǎn)在以MN為直徑的圓上,若存在,求出點(diǎn)Q的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知實(shí)數(shù)x,y滿足x2+y2-4x+1=0,則$\frac{y}{x}$的最大值為( 。
A.1B.-$\sqrt{3}$C.$\sqrt{3}$D.2

查看答案和解析>>

同步練習(xí)冊(cè)答案