分析 (I)由橢圓的定義可知,拋物線的焦點(diǎn)($\frac{p}{2}$,0),根據(jù)拋物線上的點(diǎn)到直線l1和直線l2的距離之和的最小值為焦點(diǎn)F到直線l2的距離,根據(jù)點(diǎn)到直線的距離公式,即可求得p的值,求得拋物線方程;
(II)設(shè)直線M(x0,y0),y-y0=k(x-x0),代入拋物線方程,由與拋物線相切,△=0,求得k=$\frac{2}{{y}_{0}}$,代入求得N點(diǎn)坐標(biāo),求得向量$\overrightarrow{OM}$和$\overrightarrow{QN}$,$\overrightarrow{OM}$•$\overrightarrow{QN}$=0,根據(jù)向量數(shù)量積的坐標(biāo)運(yùn)算,(1-x1)x0+${x}_{1}^{2}$+x1-2=0,即可求得x1=1,即在x軸上存在點(diǎn)到Q(1,0)在以MN為直徑的圓上.
解答 解:(I)由題意可知,l2為拋物線的準(zhǔn)線,拋物線的焦點(diǎn)坐標(biāo)為($\frac{p}{2}$,0),
由拋物線的定義可知拋物線上的點(diǎn)到直線l2的距離等于其到焦點(diǎn)F的距離,
∴拋物線上的點(diǎn)到直線l1和直線l2的距離之和的最小值為焦點(diǎn)F到直線l2的距離,
∴d=$\frac{丨2p+6丨}{\sqrt{{3}^{2}+{4}^{2}}}$=2,解得:p=2,
∴拋物線的方程為:y2=4x,
(II)設(shè)M(x0,y0),由題意可知,直線l的斜率存在且不等于0,設(shè)為直線的斜率為k,
則直線方程為:y-y0=k(x-x0),代入拋物線線方程,整理得:ky2-4y+4y0-k${y}_{0}^{2}$=0,
△=16-4k(4y0-k${y}_{0}^{2}$)=0,求得k=$\frac{2}{{y}_{0}}$,
∴直線l的方程為:y-y0=$\frac{2}{{y}_{0}}$(x-x0),令x=-1,又由${y}_{0}^{2}=4{x}_{0}$,可知N(-1,$\frac{{y}_{0}^{2}-4}{2{y}_{0}}$),
設(shè)Q(x1,0),$\overrightarrow{OM}$=(x0-x1,y0),$\overrightarrow{QN}$=(-1-x1,$\frac{{y}_{0}^{2}-4}{2{y}_{0}}$),
由題意可知$\overrightarrow{OM}$•$\overrightarrow{QN}$=0,
∴(x0-x1)(-1-x1)+y0•$\frac{{y}_{0}^{2}-4}{2{y}_{0}}$=0,
把${y}_{0}^{2}=4{x}_{0}$,代入上式,可得:(1-x1)x0+${x}_{1}^{2}$+x1-2=0,
∵對(duì)任意的x0等式恒成立,$\left\{\begin{array}{l}{1-{x}_{1}=0}\\{{x}_{1}^{2}+{x}_{1}-2=0}\end{array}\right.$,
∴x1=1,即在x軸上存在點(diǎn)到Q(1,0)在以MN為直徑的圓上.
點(diǎn)評(píng) 本題考查拋物線的方程及性質(zhì),考查直線與拋物線的位置關(guān)系,拋物線的定義,向量數(shù)量積的坐標(biāo)運(yùn)算的綜合應(yīng)用,考查轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 160件 | B. | 120件 | C. | 80件 | D. | 60件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -3,1 | B. | 2,2 | C. | 2,1 | D. | 1,3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 3 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向右平移$\frac{π}{3}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的3倍(橫坐標(biāo)不變) | |
B. | 向右平移$\frac{π}{6}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來的3倍(橫坐標(biāo)不變) | |
C. | 向左平移$\frac{π}{3}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)縮短到原來的3倍(橫坐標(biāo)不變) | |
D. | 向左平移$\frac{π}{6}$個(gè)單位,再把各點(diǎn)的縱坐標(biāo)伸長(zhǎng)到原來的3倍(橫坐標(biāo)不變) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | log23 | B. | log23或-1 | C. | log23或0 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com