【題目】若函數(shù)的定義域?yàn)?/span>,滿足對(duì)任意,有.則稱為“形函數(shù)”;若函數(shù)定義域?yàn)?/span>,恒大于0,且對(duì)任意,恒有,則稱為“對(duì)數(shù)形函數(shù)”.

1)當(dāng)時(shí),判斷是否是“形函數(shù)”,并說明理由;

2)當(dāng)時(shí),判斷是否是“對(duì)數(shù)形函數(shù)”,并說明理由;

3)若函數(shù)形函數(shù),且滿足對(duì)任意都有,問是否是“對(duì)數(shù)形函數(shù)”?請(qǐng)加以證明,如果不是,請(qǐng)說明理由.

【答案】1)不是;詳見解析(2)是;詳見解析(3)是,詳見解析

【解析】

1)由,作差化簡,得到當(dāng),同號(hào)時(shí),此時(shí),即可得到結(jié)論;

2)因?yàn)?/span>恒成立,可利用分析法和函數(shù)的新定義,作出判定和證明.

3)由的新定義和,得到,進(jìn)而得到,再根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì),即可求解.

1)由題,函數(shù),

當(dāng),同號(hào)時(shí),此時(shí),

此時(shí)不滿足,所以不是型函數(shù).

2)因?yàn)?/span>恒成立,

要證對(duì)任意,,,

即證對(duì)任意,,,

即證對(duì)任意,

因?yàn)?/span>

所以是對(duì)數(shù)型函數(shù)

3)函數(shù)是對(duì)數(shù)型函數(shù).證明如下:

因?yàn)?/span>型函數(shù),所以對(duì)任意,,有,

又由對(duì)任意,有,所以

所以,所以,

所以,

所以是對(duì)數(shù)型函數(shù).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知多面體的底面是邊長為的菱形, 底面, ,且

1證明:平面平面

2若直線與平面所成的角為,求二面角

的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)為圓的圓心, 是圓上的動(dòng)點(diǎn),點(diǎn)在圓的半徑上,且有點(diǎn)上的點(diǎn),滿足, .

1)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡方程;

2)若斜率為的直線與圓相切,直線與(1)中所求點(diǎn)的軌跡交于不同的兩點(diǎn), 是坐標(biāo)原點(diǎn),且時(shí),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,

的解析式;

時(shí),的值域;

設(shè),若對(duì)任意的,總有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)與拋物線的焦點(diǎn)重合,且橢圓的離心率為

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓的右頂點(diǎn),過點(diǎn)作兩條直線分別與橢圓交于另一點(diǎn),若直線的斜率之積為,求證:直線恒過一個(gè)定點(diǎn),并求出這個(gè)定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線方程是.

(1)求的值及函數(shù)的最大值;

(2)若實(shí)數(shù)滿足.

(i)證明:;

(ii)若,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左頂點(diǎn),右焦點(diǎn)分別為,右準(zhǔn)線為,

(1)若直線上不存在點(diǎn),使為等腰三角形,求橢圓離心率的取值范圍;

(2)在(1)的條件下,當(dāng)取最大值時(shí),點(diǎn)坐標(biāo)為,設(shè)是橢圓上的三點(diǎn),且,求:以線段的中心為原點(diǎn),過兩點(diǎn)的圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn)到拋物線焦點(diǎn)的距離為

(1)求的值;

(2) 設(shè)是拋物線上異于的兩個(gè)不同點(diǎn),過軸的垂線,與直線交于點(diǎn),過軸的垂線,與直線交于點(diǎn),過軸的垂線,與直線分別交于點(diǎn)

求證:①直線的斜率為定值;

是線段的中點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系取相同的長度單位,且以原點(diǎn)為極點(diǎn),以軸正半軸為極軸)中,圓的方程為.

(1)求圓的直角坐標(biāo)方程;

(2)設(shè)圓與直線交于點(diǎn),若點(diǎn)的坐標(biāo)為,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案