7.一個三角形的直觀圖是腰長為4的等腰直角三角形,則它的原面積是16$\sqrt{2}$.

分析 可根據(jù)直觀圖和原圖面積之間的關(guān)系,直接求面積.

解答 解:由直觀圖(底不變,高減半),可推出原圖形的面積為S=$\frac{1}{2}×8×4\sqrt{2}$=16$\sqrt{2}$.
故答案為:16$\sqrt{2}$.

點(diǎn)評 本題考查斜二測畫法及斜二測畫法中原圖和直觀圖面積之間的聯(lián)系,考查作圖能力和運(yùn)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若命題“?x0∈R,x02+mx0-3<0”為假命題,則實(shí)數(shù)m的取值范圍是m∈∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.如圖是某校的校園設(shè)施平面圖,現(xiàn)用不同的顏色作為各區(qū)域的底色,為了便于區(qū)分,要求相鄰區(qū)域不能使用同一種顏色.若有6種不同的顏色可選,則有480種不同的著色方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)定義在(0,+∞)的單調(diào)函數(shù)f(x),對任意的x∈(0,+∞)都有f[f(x)-log2x]=6.方程f(x)-f'(x)=4在下列哪個區(qū)間內(nèi)有解( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知數(shù)列{an}中,an=$\left\{\begin{array}{l}{{2}^{n-1},(n為正奇數(shù))}\\{2n-1,(n為正偶數(shù))}\end{array}\right.$,設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,則S12=1443.(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)隨機(jī)變量ξ~B(4,$\frac{1}{3}$),則P(ξ=2)的值為( 。
A.$\frac{4}{81}$B.$\frac{4}{27}$C.$\frac{4}{9}$D.$\frac{8}{27}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=x3+bx2+cx+d的圖象過點(diǎn)P(0,1),且在點(diǎn)M(1,f(1))處的切線方程為2x-y-5=0.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知△ABC中,若b2+c2+$\sqrt{2}$bc=a2,則∠A=(  )
A.45°B.60°C.120°D.135°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.(1)已知x>1,求3x+$\frac{4}{x-1}$+1的最小值;
(2)已知0≤x≤2,求函數(shù)f(x)=$\sqrt{x(4-2x)}$的最值.

查看答案和解析>>

同步練習(xí)冊答案