5.若一個(gè)正三棱柱(底面為正三角形,側(cè)面為矩形的棱柱)的三視圖如圖所示,則這個(gè)正三棱柱的側(cè)棱長(zhǎng)和底面邊長(zhǎng)分別為2,4

分析 由俯視圖可知三棱柱高為2,底面三角形的高為2$\sqrt{3}$.

解答 解:由側(cè)視圖可知三棱柱的高為2,即側(cè)棱長(zhǎng)為2.
由側(cè)視圖可得底面正三角形的高為2$\sqrt{3}$,
∴底面正三角形的邊長(zhǎng)為4.
故答案為:2,4.

點(diǎn)評(píng) 本題考查了棱柱的三視圖和結(jié)構(gòu)特征,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在長(zhǎng)方體ABCD-A1B1C1D1中,AB=3,BC=2,AA1=1,點(diǎn)M,N,P分別是棱AB,BC,CC1的中點(diǎn),則三棱錐C1-MNP的體積為$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖,則輸出的S等于( 。
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{5}{6}$D.$\frac{6}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}的前n項(xiàng)和為Sn,且3Sn+an-3=0,n∈N*
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{1}{2}{log_2}({1-{S_{n+1}}})$,求Tn=$\frac{1}{{{b_1}{b_2}}}+\frac{1}{{{b_2}{b_3}}}+…+\frac{1}{{{b_n}{b_{n+1}}}}$,求使Tn≥$\frac{504}{1009}$成立的n的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若三棱柱ABC-A1B1C1的體積為V,P為CC1上的一點(diǎn),${V}_{P-AB{B}_{1}{A}_{1}}$=$\frac{2V}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.${(x-\frac{1}{{\sqrt{x}}})^6}(2{x^3}+1)$的常數(shù)項(xiàng)是( 。
A.15B.17C.-15D.-17

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,滿足S4=4(a3+1),3a3=5a4
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{|an|}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.由曲線y=$\sqrt{x}$,直線y=x所圍成的封閉曲線的面積是(  )
A.$\frac{1}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.F是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點(diǎn).過點(diǎn)F向C的-條漸近線引垂線,垂足為A,交另一條漸近線于點(diǎn)B,若3$\overrightarrow{AF}$=$\overrightarrow{FB}$,則C的心離心率是( 。
A.$\sqrt{2}$B.2C.$\frac{\sqrt{6}}{2}$D.$\frac{\sqrt{14}}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案