A. | $\sqrt{2}$f($\frac{π}{3}$)<$\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{3}$) | B. | $\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{3}$)<$\sqrt{3}$f($\frac{π}{3}$)<$\sqrt{3}$f($\frac{π}{4}$) | ||
C. | $\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{3}$)<$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{3}$) | D. | $\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{3}$)<$\sqrt{3}$f($\frac{π}{3}$) |
分析 把設(shè)g(x)=$\frac{f(x)}{sinx}$,得到函數(shù)g(x)在(0,$\frac{π}{2}$)上為增函數(shù),利用單調(diào)性判斷即可.
解答 解:設(shè)g(x)=$\frac{f(x)}{sinx}$,
∴g′(x)=$\frac{f′(x)•sinx-f(x)•cosx}{si{n}^{2}x}$,
∵f(x)<f′(x)tanx,?x∈(0,$\frac{π}{2}$)都有:f(x)>0,
∴f(x)cosx<f′(x)sinx,
∴g′(x)>0,
∴g(x)在(0,$\frac{π}{2}$)上為增函數(shù),
∴g($\frac{π}{3}$)>g($\frac{π}{4}$),
∴$\frac{f(\frac{π}{3})}{sin\frac{π}{3}}$>$\frac{f(\frac{π}{4})}{sin\frac{π}{4}}$,
∴$\sqrt{2}$f($\frac{π}{3}$)>$\sqrt{3}$f($\frac{π}{4}$),
∴$\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{4}$)<$\sqrt{2}$f($\frac{π}{3}$)<$\sqrt{3}$f($\frac{π}{3}$)
故選:D.
點(diǎn)評(píng) 本題綜合考查了導(dǎo)數(shù)的運(yùn)用,結(jié)合單調(diào)性判斷大小,關(guān)鍵是根據(jù)題意得出構(gòu)造的函數(shù),才能夠利用導(dǎo)數(shù)解決,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{3}$ | B. | $\sqrt{6}$ | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\frac{{\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
時(shí)間 | 周一 | 周二 | 周三 | 周四 | 周五 |
車流量x(萬(wàn)輛) | 50 | 51 | 54 | 57 | 58 |
PM2.5的濃度y(微克/立方米) | 69 | 70 | 74 | 78 | 79 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com