A. | 3 | B. | 8 | C. | 14 | D. | 15 |
分析 作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,即可得到結(jié)論.
解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖
由z=3x+4y得y=-$\frac{3}{4}$x+$\frac{z}{4}$,
平移直線y=-$\frac{3}{4}$x+$\frac{z}{4}$由圖象可知當(dāng)直線y=-$\frac{3}{4}$x+$\frac{z}{4}$經(jīng)過(guò)點(diǎn)A時(shí),直線y=-$\frac{3}{4}$x+$\frac{z}{4}$的截距最大,
此時(shí)z最大,
由$\left\{\begin{array}{l}{x+2y=6}\\{2x-y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,
即A(2,2)
此時(shí)z=3×2+4×2=6+8=14,
故選:C.
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1] | B. | (-∞,-1] | C. | [-1,+∞) | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 1 | C. | -3 | D. | 不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 6 | C. | 8 | D. | 16 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com