2.已知k≠0,直線l1:y=-$\frac{1}{k}$x和l2:y-2=k(x-2)的交點為M,則M到原點的最大距離為( 。
A.2$\sqrt{3}$B.2C.2$\sqrt{2}$D.$\frac{2\sqrt{2}}{5}$

分析 求出交點為M($\frac{2{k}^{2}-2k}{1+{k}^{2}}$,$\frac{2-2k}{1+{k}^{2}}$),可得|OM|,利用基本不等式,可求M到原點的最大距離.

解答 解:直線l1:y=-$\frac{1}{k}$x和l2:y-2=k(x-2)聯(lián)立,交點為M($\frac{2{k}^{2}-2k}{1+{k}^{2}}$,$\frac{2-2k}{1+{k}^{2}}$),
∴|OM|=$\sqrt{\frac{(2-2k)^{2}}{1+{k}^{2}}}$=$\sqrt{4-\frac{8k}{1+{k}^{2}}}$≤$\sqrt{4+4}$=2$\sqrt{2}$(k=-1時取等號).
故選:C.

點評 本題考查M到原點的最大距離,考查基本不等式的運用,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

14.下列四個數(shù)中,最大的是(  )
A.11011(2)B.103(4)C.44(5)D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),作直線l交橢圓于P,Q兩點,M為線段PQ的中點,O為坐標原點,設直線l的斜率為k1,直線OM的斜率為k2,k1k2=-$\frac{2}{3}$.則橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知數(shù)列{an}的通項公式an=2n-(-1)n,n∈N*.設an1,an2,…,ant(其中n1<n2<…<nt,t∈N*)成等差數(shù)列.
(1)若t=3.
①當n1,n2,n3為連續(xù)正整數(shù)時,求n1的值;
②當n1=1時,求證:n3-n2為定值;
(2)求t的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)y=$\frac{{x}^{2}}{x-2}$(x>2)的最小值為8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.設f(2x)=12x2+4x-3,求f(3).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設函數(shù)f(x)=ax2-(a+1)x+1.
(1)若不等式f(x)<mx的解集為{x|1<x<2},求實數(shù)a、m的值;
(2)解不等式f(x)<0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知cosα=$\frac{4}{5}$,α是第四象限角,則sin(2π-α)=( 。
A.$\frac{3}{5}$B.$\frac{4}{5}$C.±$\frac{3}{5}$D.-$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.從重量分別為1,2,3,4,…,10,11克的砝碼(每種砝碼各一個)中選出若干個,使其總重量恰為10克的方法總數(shù)為m,下列各式的展開式中x10的系數(shù)為m的選項是(  )
A.(1+x)(1+x2)(1+x3)…(1+x11
B.(1+x)(1+2x)(1+3x)…(1+11x)
C.(1+x)(1+2x2)(1+3x3)…(1+11x11
D.(1+x)(1+x+x2)(1+x+x2+x3)…(1+x+x2+…+x11

查看答案和解析>>

同步練習冊答案