6.有能力互異的3人應聘同一公司,他們按照報名順序依次接受面試,經(jīng)理決定“不錄用第一個接受面試的人,如果第二個接受面試的人比第一個能力強,就錄用第二個人,否則就錄用第三個人”,記該公司錄用到能力最強的人的概率為p,錄用到能力中等的人的概率為q,則(p,q)=( 。
A.($\frac{1}{6}$,$\frac{1}{6}$)B.($\frac{1}{2}$,$\frac{1}{6}$)C.($\frac{1}{2}$,$\frac{1}{4}$)D.($\frac{1}{2}$,$\frac{1}{3}$)

分析 利用列舉法列出基本事件總數(shù)和該公司錄用到能力最強的人包含的基本事件個數(shù)和該公司錄用到能力中等的人包含的基本事件個數(shù),由此能求出結(jié)果.

解答 解:設三人能力分別為強,中,弱,則三人參加面試的次序為:
(強,中,弱),(強,弱,中),(中,強,弱),(中,弱,強),(弱,中,強),(弱,強,中),
即基本事件總數(shù)n=6,
按“不錄用第一個接受面試的人,如果第二個接受面試的人比第一個能力強,就錄用第二個人,否則就錄用第三個人”的規(guī)定,
該公司錄用到能力最強的人包含的基本事件有:(中,強,弱),(中,弱,強),(弱,強,中),共三種情況,
∴該公司錄用到能力最強的人的概率p=$\frac{3}{6}$=$\frac{1}{2}$.
該公司錄用到能力中等的人包含的基本事件有:(強,弱,中),(弱,中,強),共二種情況,
∴該公司錄用到能力中等的人的概率q=$\frac{2}{6}=\frac{1}{3}$.
故選:D.

點評 本題考查概率的求法,是中檔題,解題時要認真審題,注意列舉法的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.把二進制數(shù)101(2)化為十進制數(shù)為(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.設函數(shù)f(x)=$\left\{\begin{array}{l}{({\frac{1}{2}})^{x-1}},x≤0\\{log_2}(4-x),0<x<4\end{array}$,若f(x)=4,則實數(shù)x=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.下列四個數(shù)中,最大的是( 。
A.11011(2)B.103(4)C.44(5)D.25

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知復數(shù)z=1+i(i為虛數(shù)單位),則復數(shù)$\frac{5}{{z}^{2}}$-z對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.某商場舉行抽獎活動,規(guī)則如下:甲箱子里裝有3個白球和2個黑球,乙箱子里裝有1個白球和3個黑球,這些球除顏色外完全相同;每次抽獎都從這兩個箱子里各隨機地摸出2個球,若摸出的白球個數(shù)不少于2個,則獲獎.(每次游戲結(jié)束后將球放回原箱)
(Ⅰ)在一次游戲中,求獲獎的概率;
(Ⅱ)在三次游戲中,記獲獎次數(shù)為隨機變量X,求X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.sin40°cos10°+cos140°sin10°=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),作直線l交橢圓于P,Q兩點,M為線段PQ的中點,O為坐標原點,設直線l的斜率為k1,直線OM的斜率為k2,k1k2=-$\frac{2}{3}$.則橢圓的離心率為( 。
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{1}{3}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設函數(shù)f(x)=ax2-(a+1)x+1.
(1)若不等式f(x)<mx的解集為{x|1<x<2},求實數(shù)a、m的值;
(2)解不等式f(x)<0.

查看答案和解析>>

同步練習冊答案