【題目】設(shè)l為曲線C:y= 在點(diǎn)(1,0)處的切線.
(Ⅰ)求l的方程;
(Ⅱ)證明:除切點(diǎn)(1,0)之外,曲線C在直線l的下方.

【答案】解:(Ⅰ)∵y=

∴l(xiāng)的斜率k=y′|x=1=1
∴l(xiāng)的方程為y=x﹣1
(Ⅱ)證明:令f(x)=x(x﹣1)﹣lnx,(x>0)
曲線C在直線l的下方,即f(x)=x(x﹣1)﹣lnx>0,
則f′(x)=2x﹣1﹣ =
∴f(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,又f(1)=0
∴x∈(0,1)時(shí),f(x)>0,即 <x﹣1
x∈(1,+∞)時(shí),f(x)>0,即 <x﹣1
即除切點(diǎn)(1,0)之外,曲線C在直線l的下方
【解析】(Ⅰ)求出切點(diǎn)處切線斜率,代入代入點(diǎn)斜式方程,可以求解;(Ⅱ)利用導(dǎo)數(shù)分析函數(shù)的單調(diào)性,進(jìn)而分析出函數(shù)圖象的形狀,可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知O為坐標(biāo)原點(diǎn),F(xiàn)是橢圓C: =1(a>b>0)的左焦點(diǎn),A,B分別為C的左,右頂點(diǎn).P為C上一點(diǎn),且PF⊥x軸,過(guò)點(diǎn)A的直線l與線段PF交于點(diǎn)M,與y軸交于點(diǎn)E.若直線BM經(jīng)過(guò)OE的中點(diǎn),則C的離心率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】穩(wěn)定房?jī)r(jià)是我國(guó)今年實(shí)施宏觀調(diào)控的重點(diǎn),國(guó)家最近出臺(tái)的一系列政策已對(duì)各地的房地產(chǎn)市場(chǎng)產(chǎn)生了影響.北京市某房地產(chǎn)介紹所對(duì)本市一樓群在今年的房?jī)r(jià)作了統(tǒng)計(jì)與預(yù)測(cè):發(fā)現(xiàn)每個(gè)季度的平均單價(jià)y(每平方米面積的價(jià)格,單位為元)與第x季度之間近似滿足:y=500sin(ωx+)+9500 (>0),已知第一、二季度平均單價(jià)如下表所示:

x

1

2

3

y

10000

9500

則此樓群在第三季度的平均單價(jià)大約是
A.10000元
B.9500元
C.9000元
D.8500元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】動(dòng)點(diǎn)A(x , y)在圓x2+y2=1上繞坐標(biāo)原點(diǎn)沿逆時(shí)針?lè)较騽蛩傩D(zhuǎn),12秒旋轉(zhuǎn)一周.已知時(shí)間t=0時(shí),點(diǎn)A的坐標(biāo)是( ),則當(dāng)0≤t≤12時(shí),動(dòng)點(diǎn)A的縱坐標(biāo)y關(guān)于 t(單位:秒)的函數(shù)的單調(diào)遞增區(qū)間是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù)f(x)= ,存在一個(gè)正數(shù)b,使得f(x)的定義域和值域相同,則非零實(shí)數(shù)a的值為(
A.2
B.﹣2
C.﹣4
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)命題p:函數(shù)f(x)=lg(ax2﹣x+ a)定義域?yàn)镽;命題q:不等式3x﹣9x<a對(duì)任意x∈R恒成立.
(1)如果p是真命題,求實(shí)數(shù)a的取值范圍;
(2)如果命題“p或q”為真命題且“p且q”為假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2(x+1),g(x)=log2(3x+1).
(1)求出使g(x)≥f(x)成立的x的取值范圍;
(2)當(dāng)x∈[0,+∞)時(shí),求函數(shù)y=g(x)﹣f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐P﹣ABCD中,底面ABCD為直角梯形,∠BAD=90°,AD∥BC,AB=BC=2,AD=4,PA⊥底面ABCD,PD與底面ABCD成30°角,E是PD的中點(diǎn).
(1)點(diǎn)H在AC上且EH⊥AC,求 的坐標(biāo);
(2)求AE與平面PCD所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,甲船以每小時(shí)15 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的南偏西75°方向的B1處,此時(shí)兩船相距20海里,當(dāng)甲船航行40分鐘到達(dá)A2處時(shí),乙船航行到甲船的南偏西45°方向的B2處,此時(shí)兩船相距10海里,問(wèn)乙船每小時(shí)航行多少海里?

查看答案和解析>>

同步練習(xí)冊(cè)答案