18.設(shè)集合A={x|2x-1>5},集合B={x|y=lg(6-x)},則A∩B等于( 。
A.(3,6)B.[3,6]C.(3,6]D.[3,6)

分析 求出A中不等式的解集確定出A,求出B中x的范圍確定出B,找出A與B的交集即可.

解答 解:由A中不等式解得:x>3,即A=(3,+∞),
由B中y=lg(6-x),得到6-x>0,即x<6,
∴B=(-∞,6),
則A∩B=(3,6),
故選:A.

點(diǎn)評(píng) 此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=($\frac{1}{3}$)x的圖象與直線y=5-x交點(diǎn)的橫坐標(biāo)為x1、x2,函數(shù)g(x)=log${\;}_{\frac{1}{3}}$x的圖象與直線y=5-x交點(diǎn)的橫坐標(biāo)為x3,x4則x1+x2+x3+x4的值為10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x<1}\\{f(x-5),x≥1}\end{array}\right.$,則f(2016)=$\frac{1}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.我國(guó)的人口呈現(xiàn)老齡化趨勢(shì),某城市為提高老年人的養(yǎng)老服務(wù)質(zhì)量,分別從甲、乙兩個(gè)社區(qū)隨機(jī)抽取了7名70歲以上的老年人進(jìn)行走訪,這14名老年人的年齡如圖的莖葉圖所示,其中甲社區(qū)7人的平均年齡為85歲.
(1)計(jì)算甲社區(qū)7為位老年人的方差s2;
(2)該城市決定從上述14人中隨機(jī)抽取2名90歲以上的老年人進(jìn)行長(zhǎng)期跟蹤走訪,求甲社區(qū)至少有一名老年人被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.等比數(shù)列{an}中,已知a2=2,a4=8,則a3=( 。
A.±4B.16C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若等差數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且數(shù)列$\left\{{\sqrt{S_n}}\right\}$也為等差數(shù)列,則a16的值為31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.若?x∈(0,$\frac{1}{2}$),9x<logax(a>0且a≠1),則實(shí)數(shù)a的取值范圍是$\frac{\root{3}{4}}{2}≤a<1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知等比數(shù)列{an}的各項(xiàng)均為正數(shù),且滿足a3=a1+a2,則$\frac{{a}_{9}+{a}_{10}}{{a}_{7}+{a}_{8}}$等于( 。
A.2+3$\sqrt{2}$B.2+2$\sqrt{2}$C.3-2$\sqrt{2}$D.3+2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={x|(x-1)(x+2)<0},B={-1,0,3},則A∩B=( 。
A.{-1,0}B.{0,3}C.{-1,3}D.{-1,0,3}

查看答案和解析>>

同步練習(xí)冊(cè)答案