,">
【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,他們分別到氣象局與某醫(yī)院抄錄了至月份每月號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:
日期 | 月日 | 月日 | 月日 | 月日 | 月日 | 月日 |
晝夜溫差 | ||||||
就診人數(shù)(個(gè)) | 16 |
該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是相鄰兩個(gè)月的概率;
(2)若選取的是月與月的兩組數(shù)據(jù),請(qǐng)根據(jù)至月份的數(shù)據(jù),求出 關(guān)于的線性回歸方程;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過人,則認(rèn)為得到的線性回歸方程是理想的,試問(2)中所得線性回歸方程是否理想?
參考公式:
img src="http://thumb.zyjl.cn/questionBank/Upload/2018/08/07/18/7f4fe67a/SYS201808071848019525920497_ST/SYS201808071848019525920497_ST.020.png" width="244" height="61" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />,
【答案】(1);(2);(3)該小組所得線性回歸方程是理想的.
【解析】試題分析:(1)試驗(yàn)發(fā)生包含的事件是從組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,滿足條件的事件是抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有種,根據(jù)古典概型的概率公式得到結(jié)果;(2)根據(jù)所給的數(shù)據(jù),求出的平均數(shù),根據(jù)公式求出系數(shù),把和的平均數(shù),代入回歸方程求出的值,即可得到線性回歸方程.
試題解析:(1)由題意知本題是一個(gè)古典概型,設(shè)抽到相鄰兩個(gè)月的數(shù)據(jù)為事件,試驗(yàn)發(fā)生包含的事件是從組數(shù)據(jù)中選取組數(shù)據(jù)共有種情況,每種情況都是等可能出現(xiàn)的其中,滿足條件的事件是抽到相鄰兩個(gè)月的數(shù)據(jù)的情況有種,;(2)由數(shù)據(jù)求得,由公式求得 ,再由求得 關(guān)于線性回歸方程為 .
【方法點(diǎn)晴】本題主要考查古典概型概率公式和線性回歸方程求法與應(yīng)用,屬于難題.求回歸直線方程的步驟:①依據(jù)樣本數(shù)據(jù)畫出散點(diǎn)圖,確定兩個(gè)變量具有線性相關(guān)關(guān)系;②計(jì)算的值;③計(jì)算回歸系數(shù);④寫出回歸直線方程為; 回歸直線過樣本點(diǎn)中心是一條重要性質(zhì),利用線性回歸方程可以估計(jì)總體,幫助我們分析兩個(gè)變量的變化趨勢(shì).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)定義域?yàn)?/span>,若對(duì)于任意的,都有,且時(shí),有.
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷并證明函數(shù)的單調(diào)性;
(3)設(shè),若,對(duì)所有,恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x與相應(yīng)的生產(chǎn)能耗y的幾組對(duì)照數(shù)據(jù)
x | 3 | 4 | 5 | 6 |
y | 2.5 | 3 | 4 | 4.5 |
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程.(其中, ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax﹣lnx,a∈R.
(1)若函數(shù)f(x)在[1,2]上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)令g(x)=f(x)﹣x2 , 是否存在實(shí)數(shù)a,當(dāng)x∈(0,e](e是自然常數(shù))時(shí),函數(shù)g(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,若拋物線的焦點(diǎn)與橢圓的一個(gè)焦點(diǎn)重合.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過橢圓的左焦點(diǎn),且斜率為的直線交橢圓于, 兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長(zhǎng)為1的正方體中,點(diǎn)分別是棱的中點(diǎn),是側(cè)面內(nèi)一點(diǎn),若∥平面,則線段長(zhǎng)度的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《張丘建算經(jīng)》是我國(guó)南北朝時(shí)期的一部重要數(shù)學(xué)著作,書中系統(tǒng)的介紹了等差數(shù)列,同類結(jié)果在三百多年后的印度才首次出現(xiàn).書中有這樣一個(gè)問題,大意為:某女子善于織布,后一天比前一天織的快,而且每天增加的數(shù)量相同,已知第一天織布5尺,一個(gè)月(按30天計(jì)算)總共織布390尺,問每天增加的數(shù)量為多少尺?該問題的答案為( )
A. 尺
B. 尺
C. 尺
D. 尺
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com