分析 對a進行討論,分a=0和a≠0時,進一步利用判別式△,即可求出不等式ax2+2x+1≤0對應的解集.
解答 解:(I)當a=0時,不等式化為2x+1≤0,不等式的解集為{x|x≤-$\frac{1}{2}$};
(II)當a≠0時,不等式對應的方程為ax2+2x+1=0,
令△=4-4a=0,解得a=1;
①當a=1時,△=0,不等式ax2+2x+1≤0對應的解集為{x|x=-1};
②當1>a>0時,△=4-4a>0,
方程ax2+2x+1=0的兩根為
x1=$\frac{-1-\sqrt{1-a}}{a}$,x2=$\frac{-1+\sqrt{1-a}}{a}$,
且x1<x2;
∴不等式的解集為{x|-$\frac{1+\sqrt{1-a}}{a}$≤x≤$\frac{-1+\sqrt{1-a}}{a}$};
③當a>1時,△<0,
方程ax2+2x+1=0無解,不等式的解集為∅
④當a<0時,△=4-4a>0,
方程ax2+2x+1=0的兩根為
x1=$\frac{-1-\sqrt{1-a}}{a}$,x2=$\frac{-1+\sqrt{1-a}}{a}$,
且x1>x2;
∴不等式的解集為{x|x≥-$\frac{1+\sqrt{1-a}}{a}$或x≤$\frac{-1+\sqrt{1-a}}{a}$}.
點評 本題考查了含有字母系數的不等式的解法與應用問題,解題時應對字母系數進行分類討論,是易錯題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
星期x | 1 | 2 | 3 | 4 | 5 |
需求量y(單位:kg) | 236 | 246 | 257 | 276 | 286 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 1008 | B. | 2017 | C. | $\frac{2017}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-2,2) | B. | (-2,2] | C. | (-∞,-2)∪[2,+∞) | D. | (-∞,2] |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 27 | B. | 25 | C. | 19 | D. | 15 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $[{0,\frac{5}{2}}]$ | B. | [-4,7] | C. | [-4,4] | D. | $[{-1,\frac{3}{2}}]$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com