【題目】在極坐標(biāo)系中,已知曲線 ,求:
(1)兩曲線(含直線)的公共點(diǎn) P 的極坐標(biāo)
(2)過點(diǎn) P ,被曲線 截得的弦長(zhǎng)為 的直線的極坐標(biāo)方程

【答案】
(1)

【解答】解:由 得曲線 的直角坐標(biāo)方程分別為

聯(lián)立方程組,解得

(x不等于0)

得點(diǎn) 的極坐標(biāo)為


(2)

【解答】解:方法一:由上述可知,曲線 即圓 ,如圖所示,

,被曲線 截得的弦長(zhǎng)為 的直線有兩條:

一條過原點(diǎn) O ,傾斜角為 ,直線的直角坐標(biāo)方程為 ,極坐標(biāo)方程為 ;

另一條過點(diǎn) ,傾斜角為 ,直線的直角坐標(biāo)方程為 ,極坐標(biāo)方程為 ,即 、

方法二:由上述可知,曲線 即圓 ,過點(diǎn) ,被曲線 截得的弦長(zhǎng)為 的直線有兩條:一條過原點(diǎn) O ,傾斜角為 ,極坐標(biāo)方程為 ;另一條傾斜角為 ,極坐標(biāo)方程為


【解析】本題主要考查了簡(jiǎn)單曲線的極坐標(biāo)方程,解決問題的關(guān)鍵是轉(zhuǎn)化為普通方程分析計(jì)算即可

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=loga(1+x),g(x)=loga(1﹣x),其中(a>0且a≠1),設(shè)h(x)=f(x)﹣g(x).
(1)求h(x)的定義域;
(2)判斷h(x)的奇偶性,并說(shuō)明理由;
(3)若a=log327+log2,求使f(x)>1成立的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果函數(shù)f(x)對(duì)其定義域內(nèi)的兩個(gè)實(shí)數(shù)x1、x2 , 都滿足不等式 ,則稱函數(shù)f(x)在其定義域內(nèi)具有性質(zhì)M.給出下列函數(shù):① ;②y=x2;③y=2x;④y=log2x.其中具有性質(zhì)M的是(
A.①④
B.②③
C.③④
D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側(cè)棱,D、E分別是的中點(diǎn),點(diǎn)E在平面ABD上的射影是的重心

(Ⅰ)求與平面ABD所成角的余弦值

(Ⅱ)求點(diǎn)到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)= ﹣ax+b,在點(diǎn)M(1,f(1))處的切線方程為9x+3y﹣10=0,求
(1)實(shí)數(shù)a,b的值;
(2)函數(shù)f(x)的單調(diào)區(qū)間以及在區(qū)間[0,3]上的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若函數(shù)f(x)的定義域?yàn)閇0,4],則函數(shù)g(x)=f(x)+f(x2)的定義域?yàn)椋?/span>
A.[0,2]
B.[0,16]
C.[﹣2,2]
D.[﹣2,0]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線過點(diǎn)(2,1)且關(guān)于軸對(duì)稱.

(1)求拋物線的方程;

(2)已知圓過定點(diǎn),圓心在拋物線上運(yùn)動(dòng),且圓軸交于兩點(diǎn),設(shè),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】本小題滿分12分設(shè)函數(shù)

若函數(shù)在定義域上為增函數(shù),求實(shí)數(shù)的取值范圍;

的條件下,若函數(shù)使得成立,求實(shí)數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一條河的兩岸平行,河的寬度d=600m,一艘客船從碼頭A出發(fā)勻速駛往河對(duì)岸的碼頭B.已知|AB|=1km,水流速度為2km/h, 若客船行駛完航程所用最短時(shí)間為6分鐘,則客船在靜水中的速度大小為( )

A.8km/h
B.km/h
C.km/h
D.10km/h

查看答案和解析>>

同步練習(xí)冊(cè)答案