8.在正方體ABCD-A1B1C1D1中,O為正方形ABCD的中心,M為DD1的中點(diǎn),P為棱A1B1的中點(diǎn),則異面直線OP與MA所成的角為( 。
A.30°B.45°C.60°D.90°

分析 正方體ABCD-A1B1C1D1中,O為正方形ABCD的中心,M為DD1的中點(diǎn),P為棱A1B1的中點(diǎn),與中點(diǎn),找(作)中點(diǎn)的思想.取AD中點(diǎn)N,則ON⊥平面ADD1A1,A1N為OP在平面ADD1A1上的射影,在正方形ADD1A1中,DM=AN,AD=AA1,∴Rt△A1NA≌Rt△AMD,∴AM⊥A1N,從而得到AM⊥OP.

解答 取AD中點(diǎn)N,則ON⊥平面ADD1A1,A1N為OP在平面ADD1A1上的射影,
在正方形ADD1A1中,DM=AN,AD=AA1,∴Rt△A1NA≌Rt△AMD
∴AM⊥A1N
由三垂線定理可知AM⊥OP.
則異面直線OP與MA所成的角為90°.
故選D.

點(diǎn)評 本題考查兩條異面直線所成角的大小的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=m-|x-2|,m∈R,f(x+2)≥0的解集為[-2,2].
(1)求m的值;
(2)若?x∈R,f(x)≥-|2x-1|-t2+$\frac{3}{2}$t恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線x2=2py(p>0)上一點(diǎn)$P(t,\frac{7}{8})$到拋物線焦點(diǎn)的距離為1,直線3x-2y+1=0與拋物線交于A,B兩點(diǎn).M為拋物線上的點(diǎn)(異于原點(diǎn)),且MA⊥MB.
(Ⅰ)求p的值;
(Ⅱ)求△MAB面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知直線(m+1)x-2my+1=0的傾斜角是45°,則m的值是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.直線y=x的傾斜角和斜率分別是( 。
A.45°,1B.135°,-1C.90°,不存在D.180°,不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD是以∠A=60°的菱形,PD⊥底面ABCD,且PD=CD,點(diǎn)M,N分別為棱AD,PC的中點(diǎn)證明:
(1)DN∥平面PMB;
(2)MB⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}中,an=2an-1+n(n≥2,n∈N).
(1){an}是否可能為等比數(shù)列?若可能,求出此等比數(shù)列的通項(xiàng)公式;若不可能,說明理由;
(2)設(shè)bn=(-1)n(an+n+2),Sn為數(shù)列{bn}的前n項(xiàng)和,且對于任意的n∈N*,n≤10,都有Sn<1,求a1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.若a>b>0,則不正確的是( 。
A.ab>b2B.($\frac{1}{2}$)a<($\frac{1}{2}$)b
C.log${\;}_{\frac{1}{2}}$a>log${\;}_{\frac{1}{2}}$bD.a2>b2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知集合U=R,A={x|-4≤x≤2},B={x|-1<x≤3},則A∩B=( 。
A.{x|-4≤x≤2或-1<x≤3}B.{x|-1<x≤2}C.{x|-1≤x≤2}D.

查看答案和解析>>

同步練習(xí)冊答案