分析 (Ⅰ)直接由已知結(jié)合拋物線定義求得p;
(Ⅱ)由(Ⅰ)中求出的p值可得拋物線方程,聯(lián)立直線與拋物線可得A,B的坐標(biāo),再結(jié)合MA⊥MB求得M的坐標(biāo),求出|AB|,由得到直線的距離公式求出M到AB的距離,代入三角形面積公式得答案.
解答 解:(Ⅰ)根據(jù)題意,$\frac{7}{8}+\frac{p}{2}=1$,即$p=\frac{1}{4}$;
(Ⅱ)由(Ⅰ)可得拋物線方程為${x}^{2}=\frac{1}{2}y$,
聯(lián)立$\left\{\begin{array}{l}{3x-2y+1=0}\\{{x}^{2}=\frac{1}{2}y}\end{array}\right.$,解得A(1,2),$B(-\frac{1}{4},\frac{1}{8})$.
設(shè)點(diǎn)M(x0,y0),由MA⊥MB,得$\overrightarrow{MA}•\overrightarrow{MB}=0$,
即$({x_0}-1)({x_0}+\frac{1}{4})+({y_0}-2)({y_0}-\frac{1}{8})=0$,
將${y}_{0}=2{{x}_{0}}^{2}$代入上式得,$({x_0}-1)({x_0}+\frac{1}{4})+4({x_0}-1)({x_0}+1)({x_0}+\frac{1}{4})({x_0}-\frac{1}{4})=0$,
又x0≠1且${x_0}≠-\frac{1}{4}$,得$1+4({x_0}+1)({x_0}-\frac{1}{4})=0$,
解得x0=0或${x_0}=-\frac{3}{4}$,
∴點(diǎn)M的坐標(biāo)為(0,0)(舍去)或$(-\frac{3}{4},\frac{9}{8})$.
在△MAB中,|AB|=$\sqrt{(1+\frac{1}{4})^{2}+(2-\frac{1}{8})^{2}}$=$\frac{5\sqrt{13}}{8}$.
M到直線3x-2y+1=0的距離d=$\frac{|3×(-\frac{3}{4})-2×\frac{9}{8}+1|}{\sqrt{13}}$=$\frac{7}{2\sqrt{13}}$.
∴△MAB的面積S=$\frac{1}{2}×\frac{5\sqrt{13}}{8}×\frac{7}{2\sqrt{13}}$=$\frac{35}{32}$.
點(diǎn)評 本題考查拋物線的簡單性質(zhì),考查了直線與拋物線位置關(guān)系的應(yīng)用,考查向量在求解圓錐曲線問題中的應(yīng)用,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 26 | B. | 2 | C. | -2 | D. | 2或-2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -4 | B. | -6 | C. | 11 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | $\frac{1}{4}$ | D. | $-\frac{1}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com