16.cos(-330°)的值為( 。
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 由條件利用誘導(dǎo)公式進(jìn)行化簡所給的式子,可得結(jié)果.

解答 解:cos(-330°)=cos(-330°+360°)=cos30°=$\frac{\sqrt{3}}{2}$,
故選:D.

點(diǎn)評(píng) 本題主要考查應(yīng)用誘導(dǎo)公式化簡三角函數(shù)式,要特別注意符號(hào)的選取,這是解題的易錯(cuò)點(diǎn),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若函數(shù)f(x)=kx-lnx在區(qū)間(1,+∞)上為單調(diào)函數(shù),則k的取值范圍是(-∞,0]∪[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在△ABC中,角A,B,C對(duì)邊分別為a,b,c.設(shè)向量$\overrightarrow{m}$=(a,b),$\overrightarrow{n}$=(sinB,sinA),$\overrightarrow{p}$=(b-2,a-2).
(Ⅰ) 若$\overrightarrow{m}$∥$\overrightarrow{n}$,求證:△ABC為等腰三角形;
(Ⅱ) 已知c=2,C=$\frac{π}{3}$,若$\overrightarrow{m}$⊥$\overrightarrow{p}$,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ均為正的常數(shù))的最小正周期為π,當(dāng)x=$\frac{2π}{3}$時(shí),函數(shù)f(x)取得最小值,則下列結(jié)論正確的是(  )
A.f($\frac{π}{2}$)<f($\frac{π}{6}$)<f(0)B.f(0)<f($\frac{π}{2}$)<f($\frac{π}{6}$)C.f($\frac{π}{6}$)<f(0)<f($\frac{π}{2}$)D.f($\frac{π}{2}$)<f(0)<f($\frac{π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.某學(xué)校有36個(gè)班,每個(gè)班有56名同學(xué)都是從1到56編的號(hào)碼.為了交流學(xué)習(xí)經(jīng)驗(yàn),要求每班號(hào)碼為14的同學(xué)留下進(jìn)行交流,這里運(yùn)用的是       ( 。
A.分層抽樣B.抽簽抽樣C.隨機(jī)抽樣D.系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=($\frac{1}{3}$,tanα),$\overrightarrow$=(cosα,2),且$\overrightarrow{a}$∥$\overrightarrow$,則cos 2α=( 。
A.$\frac{1}{9}$B.$-\frac{1}{9}$C.-$\frac{7}{9}$D.$\frac{7}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.五個(gè)數(shù)1,2,5,a,b的均值為3,方差為2,則這五個(gè)數(shù)的中位數(shù)是3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,在棱長為a的正方體ABCD-A1B1C1D1中,E、F、M分別是棱AB、BC和DD1 所在直線上的動(dòng)點(diǎn).
(1)求∠EB1F的取值范圍;
(2)若N為面EB1F內(nèi)的一點(diǎn),且∠EBN=45°,∠FBN=60°,求∠B1BN的余弦值;
(3)若E、F分別是所在正方體棱的中點(diǎn),試問在棱DD1上能否找到一點(diǎn)M,使BM⊥平面EFB1?若能,試確定點(diǎn)M的位置;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.直線y=k(x-1)+2恒過定點(diǎn)(  )
A.(-1,2)B.(1,2)C.(2,-1)D.(2,1)

查看答案和解析>>

同步練習(xí)冊(cè)答案