【題目】如圖,梯形ABCD中,AD∥BC,AD=AB=1,AD⊥AB,∠BCD=45°,將△ABD沿對角線BD折起,設折起后點A的位置為A′,使二面角A′—BD—C為直二面角,給出下面四個命題:①A′D⊥BC;②三棱錐A′—BCD的體積為;③CD⊥平面A′BD;④平面A′BC⊥平面A′DC.其中正確命題的個數(shù)是( )
A.1B.2C.3D.4
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子中裝有5張編號依次為1,2,3,4,5的卡片,這5張卡片除號碼外完全相同,現(xiàn)進行有放回的連續(xù)抽取兩次,每次任意地取出一張卡片.
(1)求出所有可能結果數(shù),并列出所有可能結果;
(2)求事件“取出卡片的號碼之和不小于7”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(多選題)如圖,設的內(nèi)角所對的邊分別為,若成等比數(shù)列,成等差數(shù)列,是外一點,,下列說法中,正確的是( )
A.B.是等邊三角形
C.若四點共圓,則D.四邊形面積無最大值
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圖一是美麗的“勾股樹”,它是一個直角三角形分別以它的每一邊向外作正方形而得到.圖二是第1代“勾股樹”,重復圖二的作法,得到圖三為第2代“勾股樹”,以此類推,已知最大的正方形面積為1,則第代“勾股樹”所有正方形的個數(shù)與面積的和分別為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,經(jīng)統(tǒng)計知年份x和儲蓄
存款y (千億元)具有線性相關關系,下表是該地某銀行連續(xù)五年的儲蓄存款(年底余額),
如下表(1):
年份x | 2014 | 2015 | 2016 | 2017 | 2018 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
表(1)
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,令
得到下表(2):
時間代號t | 1 | 2 | 3 | 4 | 5 |
0 | 1 | 2 | 3 | 5 |
表(2)
(1)由最小二乘法求關于t的線性回歸方程;
(2)通過(1)中的方程,求出y關于x的線性回歸方程;
(3)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?
(附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸直線的斜率和截距的最小二乘估計分別為,)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com