給出下列四個(gè)結(jié)論:
①若A、B、C、D是平面內(nèi)四點(diǎn),則必有
AC
+
BD
=
BC
+
AD
;
②對(duì)于命題p:?x∈R,使得x2+x+1<0,則?p:?x∈R,均有x2+x+1>0;
③若函數(shù)f(x)=
lnx,x>0
f(x+1)+1,x≤0
,則f(
1
e
-1)的值為0;
④△ABC中,∠ABC=60°,AB=2,BC=6,BC邊上任取一點(diǎn)D,使△ABD為鈍角三角形的概率為
1
6

其中正確結(jié)論的序號(hào)是
 
.(填上所有正確結(jié)論的序號(hào))
考點(diǎn):命題的真假判斷與應(yīng)用
專(zhuān)題:綜合題
分析:①中,平面向量的運(yùn)算得出
AC
+
BD
=
BC
+
AD
,判定①正確;
②中,寫(xiě)出命題p的否定?p,判定②錯(cuò)誤;
③中,由解析式求出f(
1
e
-1)的值,判定③正確;
④中,根據(jù)題意,討論△ABD為鈍角三角形的情況,求出對(duì)應(yīng)的概率,得出結(jié)論.
解答: 解:對(duì)于①,∵
AC
+
BD
=(
AB
+
BC
)+
BD
=
BC
+
AD
,∴①正確;
對(duì)于②,命題p:?x∈R,使得x2+x+1<0,的否定是?p:?x∈R,均有x2+x+1≥0,∴②錯(cuò)誤;
對(duì)于③,∵
1
e
-1<0,∴f(
1
e
-1)=f(
1
e
)+1=ln
1
e
+1=-1+1=0,∴③正確;
對(duì)于④,第一種∠ADB為鈍角,這種情況的邊界是∠ADB=90°的時(shí)候,此時(shí)BD=1;∴這種情況下,必有0<BD<1;
第二種∠BAD為鈍角,這種情況的邊界是∠BAD=90°的時(shí)候,此時(shí)BD=4,
∴這種情況下,必有4<BD<6;
綜合兩種情況,若△ABD為鈍角三角形,則0<BD<1或4<OC<6;
∴概率P=
1
6
+
2
6
=
1
2
,∴④錯(cuò)誤;
綜上,以上正確的結(jié)論是①③.
故答案為:①③.
點(diǎn)評(píng):本題通過(guò)命題真假的判定,考查了平面向量的加法運(yùn)算,命題的否定,分段函數(shù)的解析式應(yīng)用以及幾何概型的計(jì)算等知識(shí),解題時(shí)應(yīng)對(duì)每一個(gè)命題認(rèn)真分析,以便得出正確的結(jié)論,是基礎(chǔ)題目.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

交通指數(shù)是交通擁堵指數(shù)的簡(jiǎn)稱(chēng),是綜合反映道路網(wǎng)暢通或擁堵的概念,記交通指數(shù)為T(mén).其范圍為[0,10],分別有五個(gè)級(jí)別:T∈[0,2)暢通;T∈[2,4)基本暢通; T∈[4,6)輕度擁堵; T∈[6,8)中度擁堵;T∈[8,10]嚴(yán)重?fù)矶,晚高峰時(shí)段(T≥2),從某市交通指揮中心選取了市區(qū)20個(gè)交通路段,依據(jù)其交通指數(shù)數(shù)據(jù)繪制的部分直方圖如圖所示.
(Ⅰ)請(qǐng)補(bǔ)全直方圖,并求出輕度擁堵、中度擁堵、嚴(yán)重?fù)矶侣范胃饔卸嗌賯(gè)?
(Ⅱ)用分層抽樣的方法從交通指數(shù)在[4,6),[6,8),[8,l0]的路段中共抽取6個(gè)路段,求依次抽取的三個(gè)級(jí)別路段的個(gè)數(shù);
(Ⅲ)從(Ⅱ)中抽出的6個(gè)路段中任取2個(gè),求至少一個(gè)路段為輕度擁堵的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖中是一個(gè)算法流程圖,則輸出的n=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若(2x2+1)5=a0+a1x2+a2x4+…+a5x10,則a3的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),當(dāng)x<0時(shí),f′(x)>0,且f(-2)=0,則不等式f(x)<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將編號(hào)為1,2,3,4的四個(gè)小球放到三個(gè)不同的盒子里,每個(gè)盒子至少放一個(gè)小球且編號(hào)為1,2的兩個(gè)小球不能放到同一個(gè)盒子里,則不同放法的種數(shù)有
 
.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=2(x-1)sinπx-1(-2≤x≤4)的所有零點(diǎn)之和等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為直線l的傾斜角,sinα+cosα=-
1
5
,則tanα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)y=cos(
π
6
-2x)的圖象向右平移
π
12
個(gè)單位后所得的圖象的一個(gè)對(duì)稱(chēng)軸是( 。
A、x=
π
6
B、x=
π
4
C、x=
π
3
D、x=
π
2

查看答案和解析>>

同步練習(xí)冊(cè)答案