分析 函數(shù)f(x)=ax+2a+1在x∈[-1,1]內(nèi)是單調(diào)函數(shù),從而f(-1)f(1)<0,由此能求出實數(shù)a的取值范圍.
解答 解:∵函數(shù)f(x)=ax+2a+1,當x∈[-1,1]時,f(x)的函數(shù)值有正有負,
∴$\left\{\begin{array}{l}{f(-1)=-a+2a+1<0}\\{f(1)=a+2a+1>0}\end{array}\right.$,
或$\left\{\begin{array}{l}{f(-1)=-a+2a+1>0}\\{f(1)=a+2a+1<0}\end{array}\right.$,
解得-1<a<-$\frac{1}{3}$,
∴實數(shù)a的取值范圍是(-1,-$\frac{1}{3}$).
故答案為:(-1,-$\frac{1}{3}$).
點評 本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x0∈R(x0≠0),x0+$\frac{1}{{x}_{0}}$≤2 | B. | ?x0∈R(x0≠0),x0+$\frac{1}{{x}_{0}}$<2 | ||
C. | ?x∈R(x≠0),x+$\frac{1}{x}$≤2 | D. | ?x∈R(x≠0),x+$\frac{1}{x}$<2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
高一年級 | 高二年級 | 高三年級 | |
女生 | x | y | 642 |
男生 | 680 | z | 658 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com