11.已知x>0,y>0,且$\frac{2}{x}+\frac{3}{y}=2$,則$\frac{x}{2}+\frac{y}{3}$的最小值為(  )
A.1B.2C.4D.$\frac{25}{6}$

分析 利用“乘1法”與基本不等式的性質即可得出.

解答 解:∵x>0,y>0,且$\frac{2}{x}+\frac{3}{y}=2$,
∴$\frac{x}{2}+\frac{y}{3}$=$\frac{1}{2}$$(\frac{2}{x}+\frac{3}{y})$$(\frac{x}{2}+\frac{y}{3})$=$\frac{1}{2}$$(2+\frac{3x}{2y}+\frac{2y}{3x})$≥$\frac{1}{2}$$(2+2\sqrt{\frac{3x}{2y}•\frac{2y}{3x}})$=2,當且僅當$\frac{3x}{2y}=\frac{2y}{3x}$時等號成立,此時x=4,y=6,
其最小值為2,
故選:B.

點評 本題考查了“乘1法”與基本不等式的性質,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.已知f(x)=ax-b(a>0且a≠1,b∈R),g(x)=x+1,若對任意實數(shù)x均有f(x)•g(x)≤0,則$\frac{1}{a}+\frac{4}$的最小值為4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.設α∈{$-1,\frac{1}{2},1,2,3$},則使函數(shù)y=xα的定義域為R,且該函數(shù)為奇函數(shù)的α值為( 。
A.1或3B.-1或1C.-1或3D.-1、1或3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知數(shù)列{an}中,an=-4n+5,等比數(shù)列{bn}的公比q滿足q=an-an-1(n≥2),且b1=a2,則|b1|+|b2|+…+|bn|=(  )
A.1-4nB.4n-1C.$\frac{1-{4}^{n}}{3}$D.$\frac{{4}^{n}-1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設f(x)是定義在(-π,0)∪(0,π)的奇函數(shù),其導函數(shù)為f'(x),且$f(\frac{π}{2})=0$,當x∈(0,π)時,f'(x)sinx-f(x)cosx<0,則關于x的不等式$f(x)<2f(\frac{π}{6})sinx$的解集為(  )
A.$(-\frac{π}{6},0)∪(0,\frac{π}{6})$B.$(-\frac{π}{6},0)∪(\frac{π}{6},π)$C.$(-π,-\frac{π}{6})∪(\frac{π}{6},π)$D.$(-π,-\frac{π}{6})∪(0,\frac{π}{6})$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.設集合P={m|-1<m≤0},Q={m|mx2+4mx-4<0對任意x恒成立},則P與Q的關系是( 。
A.P⊆QB.Q⊆PC.P=QD.P∩Q=∅

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.定義在R上的偶函數(shù)y=f(x),當x≥0時,f(x)=x2-2x.
(1)求當x<0時,函數(shù)y=f(x)的解析式,并在給定坐標系下,畫出函數(shù)y=f(x)的圖象;
(2)寫出函數(shù)y=|f(x)|的單調遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列函數(shù)中:①y=3x-1②y=xx③y=5×2x④y=2x-1⑤y=5x,一定為指數(shù)函數(shù)的個數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若定義域為R的函數(shù)f(x)滿足:對于任意的x1,x2∈R,都有f(x1+x2)=f(x1)+f(x2)-2016,且x>0時,有f(x)>2016,f(x)在區(qū)間[-2016,2016]的最大值,最小值分別為M、N,則M+N的值為( 。
A.2015B.2016C.4030D.4032

查看答案和解析>>

同步練習冊答案