2.設α∈{$-1,\frac{1}{2},1,2,3$},則使函數(shù)y=xα的定義域為R,且該函數(shù)為奇函數(shù)的α值為( 。
A.1或3B.-1或1C.-1或3D.-1、1或3

分析 根據(jù)冪函數(shù)的性質,我們分別討論α為-1,$\frac{1}{2}$1,2,3時,函數(shù)的定義域和奇偶性,然后分別和已知中的要求進行比照,即可得到答案.

解答 解:當α=-1時,函數(shù)的定義域為{x|x≠0},不滿足定義域為R;
當α=1時,函數(shù)y=xα的定義域為R且為奇函數(shù),滿足要求;
當α=$\frac{1}{2}$函數(shù)的定義域為{x|x≥0},不滿足定義域為R;
當α=2時,函數(shù)y=xα的定義域為R且為偶函數(shù),不滿足要求
當α=3時,函數(shù)y=xα的定義域為R且為奇函數(shù),滿足要求;
故選:A.

點評 本題考查的知識點是奇函數(shù),函數(shù)的定義域及其求法,其中熟練掌握冪函數(shù)的性質,特別是定義域和奇偶性與指數(shù)α的關系,是解答本題的關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.設a,b∈R,則“$\left\{\begin{array}{l}{a+b>2}\\{ab>1}\end{array}\right.$”是“a>1且b>1”的( 。
A.充分非必要條件B.必要非充分條件
C.充分必要條件D.既非充分又非必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.如果由矩陣$(\begin{array}{l}{a}&{2}\\{2}&{a}\end{array})$$(\begin{array}{l}{x}\\{y}\end{array})$=$(\begin{array}{l}{a+2}\\{2a}\end{array})$表示x,y的二元一次方程組無解,則實數(shù)a=-2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設(1+x)n=a0+a1x+a2x2+a3x3+…+anxn,若$\frac{{a}_{2}}{{a}_{3}}$=$\frac{1}{3}$,則n=11.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1經過點(2,3),兩條漸近線的夾角為60°,直線l交雙曲線于A、B兩點.
(1)求雙曲線C的方程;
(2)若l過原點,P為雙曲線上異于A,B的一點,且直線PA、PB的斜率kPA,kPB均存在,求證:kPA•kPB為定值;
(3)若l過雙曲線的右焦點F1,是否存在x軸上的點M(m,0),使得直線l繞點F1無論怎樣轉動,都有$\overrightarrow{MA}$•$\overrightarrow{MB}$=0成立?若存在,求出M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知0<a<1,logax<logay<0,則( 。
A.1<y<xB.1<x<yC.x<y<1D.y<x<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知A={-2,3a-1,a2-3},B={a-2,a-1,a+1},若A∩B={-2},求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知x>0,y>0,且$\frac{2}{x}+\frac{3}{y}=2$,則$\frac{x}{2}+\frac{y}{3}$的最小值為( 。
A.1B.2C.4D.$\frac{25}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知函數(shù)f(x)=mex-x-1(其中e為自然對數(shù)的底數(shù),),若f(x)=0有兩根x1,x2且x1<x2,則函數(shù)y=(e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$)($\frac{1}{{e}^{{x}_{2}}+{e}^{{x}_{1}}}$-m)的值域為(-∞,0).

查看答案和解析>>

同步練習冊答案