13.設(shè)α、β表示不同的平面,l表示直線,A、B、C表示不同的點(diǎn),給出下列三個(gè)命題:
①若A∈l,A∈α,B∈l,B∈α,則l?α
②若A∈α,A∈β,B∈α,B∈β,則α∩β=AB
③若l∉α,A∈l,則A∉α
其中正確的個(gè)數(shù)是( 。
A.1B.2C.3D.4

分析 根據(jù)平面的基本性質(zhì),即可得出結(jié)論.

解答 解:①若A∈l,A∈α,B∈l,B∈α,根據(jù)公理1,可得l?α,正確;
②若A∈α,A∈β,B∈α,B∈β,根據(jù)公理2,可得α∩β=AB,正確;
③若l∉α,A∈l,則A∉α或l∩α=A,故不正確.
故選:B.

點(diǎn)評(píng) 本題考查平面的基本性質(zhì),考查學(xué)生分析解決問(wèn)題的能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知點(diǎn)A(1,1),B(-1,5),向量$\overrightarrow{AC}$=2$\overrightarrow{AB}$,則點(diǎn)C的坐標(biāo)為(-3,9).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c.
(1)若2asinB=$\sqrt{3}$b,A為銳角,求A的值;
(2)若b=5,c=$\sqrt{5}$,cosC=$\frac{9}{10}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在1,3,5,7,9中任取2個(gè)不同的數(shù),則這2個(gè)數(shù)的和大于9的概率為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知x,y均為正實(shí)數(shù),則$\frac{x}{2x+3y}$+$\frac{3y}{x+6y}$的最大值為( 。
A.$\frac{3}{4}$B.$\frac{\sqrt{6}}{3}$C.$\frac{8}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知a,b,c是三條不同的直線,α,β是兩個(gè)不同的平面,給出下列命題:
①a?α,α∥β,則a∥β;
②若a∥α,α∥β,則a∥β;
③若α∥β,a⊥α,則a⊥β;
④若a∥β,a∩α=A,則a與β必相交;
⑤若異面直線a與b所成角為50°,b∥c,a與c異面,則a與c所成角為50°.
其中正確命題的序號(hào)為①③④⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.下列四個(gè)命題:
①“x<2”是“x2-x<0”成立的必要不充分條件;
②命題“?x∈R,x2+5x=6”的否定是“?x0∉R,x02+5x0≠6”;
③若x>y,則x2>y2;
④若p∨q為假命題,則p,q均為假命題.
其中正確的命題的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.若從高二男生中隨機(jī)抽取5名男生,其身高和體重?cái)?shù)據(jù)如表所示:
身高x(cm)160165170175180
體重y(kg)6366707477
根據(jù)如表可得回歸方程為:$\widehat{y}$=0.56x+$\widehat{a}$,則預(yù)報(bào)身高為172的男生的體重( 。
A.71.12B.約為71.12C.約為72D.無(wú)法預(yù)知

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.如圖所示,是一個(gè)空間幾何體的三視圖,且這個(gè)空間幾何體的所有頂點(diǎn)都在同一球面上,則這個(gè)球的體積是( 。
A.$\frac{28}{3}π$B.$\frac{28}{27}π$C.$\frac{224}{27}\sqrt{21}π$D.$\frac{28}{9}\sqrt{21}π$

查看答案和解析>>

同步練習(xí)冊(cè)答案