15.設(shè)向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$是夾角為$\frac{2π}{3}$的單位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+$\overrightarrow{{e}_{2}}$,則|$\overrightarrow{a}$|=1.

分析 由已知求得$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}$,再由|$\overrightarrow{a}$|=|$\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}$|=$\sqrt{(\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})^{2}}$,展開后得答案.

解答 解:∵$|\overrightarrow{{e}_{1}}|=|\overrightarrow{{e}_{2}}|=1$,且$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$的夾角為$\frac{2π}{3}$,
∴$\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}=1×1×cos\frac{2π}{3}=-\frac{1}{2}$.
則|$\overrightarrow{a}$|=|$\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}}$|=$\sqrt{(\overrightarrow{{e}_{1}}+\overrightarrow{{e}_{2}})^{2}}=\sqrt{{\overrightarrow{{e}_{1}}}^{2}+{\overrightarrow{{e}_{2}}}^{2}+2\overrightarrow{{e}_{1}}•\overrightarrow{{e}_{2}}}$=$\sqrt{1+1+2×(-\frac{1}{2})}=1$.
故答案為:1.

點評 本題考查平面向量的數(shù)量積運算,考查了向量模的求法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知數(shù)列{an}的前n項和為Sn,且滿足a1=1,anan+1=2n,則S20=( 。
A.3066B.3063C.3060D.3069

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知實數(shù)x、y滿足$\left\{\begin{array}{l}{x+2y-2≥0}\\{x-y+1≥0}\\{3x+y-6≤0}\end{array}\right.$,則$\sqrt{{x}^{2}+{y}^{2}}$的最小值是$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合M={x|-2<x<3},N={y|y=log2(x2+1)},則M∩N=( 。
A.[1,3)B.[0,3)C.(-2,3)D.[-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)集合A={1,2,…n},n≥4,n∈N*,若X⊆A,且2≤Card(X)≤n-2,(Card(X)表示集合X中的元素個數(shù))令aX表示X中最大數(shù)與最小數(shù)之和,則
(1)當(dāng)n=5時,集合X的個數(shù)為20
(2)所有aX的平均值為n+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若函數(shù)f(x)=$\left\{\begin{array}{l}{{3}^{x-1}+1(x<2)}\\{lo{g}_{3}(x+2)(x≥2)}\end{array}\right.$,則f(7)+f(log36)=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.在($\frac{1}{\root{3}{x}}$+2x$\sqrt{x}$)7的展開式中,x5的系數(shù)為560.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.各項均為正數(shù)的等差數(shù)列{an},其公差d>0,前n項和為Sn,若a1,a2,a5構(gòu)成等比數(shù)列,則下列能構(gòu)成的等比數(shù)列的是(  )
A.S1,S2,S3B.S1,S2,S4C.S1,S3,S4D.S2,S3,S4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線C:y2=4x的焦點為F,準(zhǔn)線為l,P是l上一點,直線PF與拋物線C相交于A、B兩點,若$\overrightarrow{FP}$=3$\overrightarrow{FA}$,則|AB|=( 。
A.5B.$\frac{16}{3}$C.$\frac{22}{3}$D.8

查看答案和解析>>

同步練習(xí)冊答案