A. | 99 | B. | 100 | C. | -55 | D. | 98 |
分析 由等差數列的通項公式及前n項和公式求得an=3n-23,Sn=$\frac{3{n}^{2}}{2}$-$\frac{43n}{2}$,由a8>0,a7<0,因此|a1|+|a2|+|a3|+…+|a11|=S11-2S7,代入即可求得|a1|+|a2|+|a3|+…+|a11|的值.
解答 解:由a1=-20,公差d=3,
∴an=a1+(n-1)d=3n-23,
前n項和Sn=$\frac{(-20+3n-23)×n}{2}$=$\frac{3{n}^{2}}{2}$-$\frac{43n}{2}$,
令an=0,即3n-23=0,解得:n=$\frac{23}{3}$,
∵n∈N*,
∴a8>0,a7<0,
∴|a1|+|a2|+|a3|+…+|a11|=S11-2S7=$\frac{3×1{1}^{2}}{2}$-$\frac{43×11}{2}$-2($\frac{3×{7}^{3}}{2}$-$\frac{43×7}{2}$)=99,
故選A.
點評 本題考查等差數列通項公式及前n項和公式,考查含絕對值的數列的前n項和的求法,考查計算能力,屬于中檔題.
科目:高中數學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 90° |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\frac{7}{2}$ | B. | 4 | C. | $\frac{9}{2}$ | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (0,2) | B. | ( $\sqrt{2}$,2) | C. | (2,4) | D. | (2,2 $\sqrt{2}$) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com