【題目】已知函數(shù).
(1)求的單調(diào)遞增區(qū)間;
(2)求證:曲線在區(qū)間上有且只有一條斜率為2的切線.
【答案】(1),(2)見解析
【解析】
(1)根據(jù)函數(shù)解析式,求得導(dǎo)函數(shù),令即可求得的單調(diào)遞增區(qū)間;
(2)曲線在區(qū)間上有且只有一條斜率為2的切線,等價(jià)于在區(qū)間上方程有唯一解,構(gòu)造函數(shù),求得導(dǎo)函數(shù),并判斷的符號,確定的單調(diào)性與極值,從而判斷出在上存在唯一一個(gè)零點(diǎn),即可證明結(jié)論.
(1)函數(shù),,
則,
令得,,
∴單調(diào)遞增區(qū)間為,
(2)原命題等價(jià)于:在區(qū)間上,方程有唯一解,
設(shè),
則
此時(shí),,,變化情況如下:
0 | |||
極大值 |
此時(shí),在上單調(diào)遞增,且,,
在上單調(diào)遞減,且,
∴在上存在唯一一個(gè)根,
在上存在唯一一個(gè)零點(diǎn),
∴曲線在區(qū)間上有且僅有一條斜率為2的切線.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面,,,分別是,,的中點(diǎn),點(diǎn)在線段上,.
(1)求證:平面;
(2)若平面平面,,,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的短軸長為2,離心率.過橢圓的右焦點(diǎn)作直線l(不與軸重合)與橢圓交于不同的兩點(diǎn),.
(1)求橢圓的方程;
(2)試問在軸上是否存在定點(diǎn),使得直線與直線恰好關(guān)于軸對稱?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸非負(fù)半軸為極軸建立極坐標(biāo)系,點(diǎn)為曲線上的動點(diǎn),點(diǎn)在線段的延長線上且滿足點(diǎn)的軌跡為.
(1)求曲線的極坐標(biāo)方程;
(2)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)求曲線與交點(diǎn)的極坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,平面平面,∥,,,,.
(1)求多面體的體積;
(2)已知是棱的中點(diǎn),在棱是否存在點(diǎn)使得∥,若存在,請確定點(diǎn)的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(γ為參數(shù)),曲線的參數(shù)方程為(s為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐秘系,已知點(diǎn)A的極坐標(biāo)為,直線l:()與交于點(diǎn)B,其中.
(1)求曲線的極坐標(biāo)方程以及曲線的普通方程;
(2)過點(diǎn)A的直線m與交于M,N兩點(diǎn),若,且,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面四邊形是菱形,點(diǎn)在線段上,∥平面.
(1)證明:點(diǎn)為線段中點(diǎn);
(2)已知平面,,點(diǎn)到平面的距離為1,四棱錐的體積為,求.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com