A. | $\frac{\sqrt{5}}{5}$ | B. | $\frac{\sqrt{6}}{6}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | $\frac{\sqrt{30}}{6}$ |
分析 過M作MD⊥BC,垂足為D,則D為BC的中點(diǎn),DM⊥平面BCC1B1.設(shè)BC=CA=CC1=1,利用勾股定理求出DM,C1D,C1M,即可得出答案.
解答 解:過M作MD⊥BC,垂足為D,則D為BC的中點(diǎn),連結(jié)DM,C1D,
∵平面ABC⊥平面BB1C1C,平面ABC∩平面BB1C1C=BC,DM?平面BCC1B1,
∴DM⊥平面BCC1B1.
∴∠DC1M為C1M與面BCC1B1所成的角.
設(shè)BC=CA=CC1=1,則DM=$\frac{1}{2}$AC=$\frac{1}{2}$,C1D=$\frac{\sqrt{5}}{2}$,
∴C1M=$\sqrt{D{M}^{2}+{C}_{1}{D}^{2}}$=$\frac{\sqrt{6}}{2}$.
∴sin∠DC1M=$\frac{DM}{{C}_{1}M}$=$\frac{\sqrt{6}}{6}$.
故選:B.
點(diǎn)評 本題考查了棱柱的結(jié)構(gòu)特征,線面角的計(jì)算,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({\frac{1}{3},\frac{3}{4}})$ | B. | $({\frac{2}{3},\frac{3}{4}})$ | C. | (3,4) | D. | (4,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x-y+1=0 | B. | x-y-1=0 | C. | x+y+1=0 | D. | x+y-1=0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com