分析 nan+1-(n+1)an=2n2+2n,化為$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=2,利用等差數(shù)列的通項(xiàng)公式可得an,再利用二次函數(shù)的單調(diào)性即可得出.
解答 解:∵nan+1-(n+1)an=2n2+2n,∴$\frac{{a}_{n+1}}{n+1}$-$\frac{{a}_{n}}{n}$=2,
∴數(shù)列{$\frac{{a}_{n}}{n}$}是等差數(shù)列,首項(xiàng)為-40,公差為2.
∴$\frac{{a}_{n}}{n}$=-40+2(n-1),化為:an=2n2-42n=2$(n-\frac{21}{2})^{2}$-$\frac{441}{2}$.
則an取最小值時(shí)n的值為10或11.
故答案為:10或11.
點(diǎn)評(píng) 本題考查了等差數(shù)列的通項(xiàng)公式、二次函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 奇函數(shù) | B. | 減函數(shù) | ||
C. | 既是奇函數(shù)又是減函數(shù) | D. | 不是奇函數(shù)也不是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-3,0) | B. | [-3,0] | C. | (0,+∞) | D. | [-3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | $\frac{8}{3}$ | C. | 4 | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,+∞) | B. | (-∞,2] | C. | (-∞,-1)和(1,2) | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
級(jí)數(shù) | 全月應(yīng)納稅所得額 | 稅率(%) |
1 | 不超過(guò)1500元的部分 | 3 |
2 | 超過(guò)1500不超過(guò)4500元的部分 | 10 |
3 | 超過(guò)4500不超過(guò)9000元的部分 | 20 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com