18.如圖,半徑為2的半圓有一內(nèi)接梯形ABCD,它的下底AB是⊙O的直徑,上底CD的端點(diǎn)在圓周上.若雙曲線(xiàn)以A、B為焦點(diǎn),且過(guò)C、D兩點(diǎn),則當(dāng)梯形ABCD的周長(zhǎng)最大時(shí),雙曲線(xiàn)的實(shí)軸長(zhǎng)為2$\sqrt{3}$-2.

分析 設(shè)∠BAC=θ,作CE⊥AB于點(diǎn)E,則可表示出BC,EB,CD,進(jìn)而可求得梯形的周長(zhǎng)的表達(dá)式,根據(jù)二次函數(shù)的性質(zhì)求得周長(zhǎng)的最大值時(shí)θ的值,則AC和BC可求,進(jìn)而根據(jù)雙曲線(xiàn)的定義求得雙曲線(xiàn)的實(shí)軸長(zhǎng).

解答 解:設(shè)∠BAC=θ,作CE⊥AB于點(diǎn)E,
則BC=2Rsinθ,EB=BCcos(90°-θ)=2Rsin2θ,
有CD=2R-4Rsin2θ,
梯形ABCD的周長(zhǎng)l=AB+2BC+CD=2R+4Rsinθ+2R-4Rsin2θ
=8+8sinθ-8sin2θ=-8(sinθ-$\frac{1}{2}$)2+10,
當(dāng)sinθ=$\frac{1}{2}$,即θ=30°時(shí),l有最大值10,
即有BC=2,AC=2$\sqrt{3}$,a=$\frac{1}{2}$(AC-BC)=$\sqrt{3}$,
可得雙曲線(xiàn)的實(shí)軸長(zhǎng)為2a=2$\sqrt{3}$-2.
故答案為:2$\sqrt{3}$-2.

點(diǎn)評(píng) 本題主要考查了雙曲線(xiàn)的應(yīng)用,雙曲線(xiàn)的定義.考查了學(xué)生分析問(wèn)題和解決問(wèn)題的能力,以及運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.如圖所示,在矩形ABCD中,E是CD上的點(diǎn),以AE為折痕將△ADE向上折起,連接BD,BE,求證:
(1)若AD⊥BD,則平面ABD⊥平面BDE;
(2)以上命題的逆命題是否成立?若成立,給出證明,否則,舉出反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.與雙曲線(xiàn)$\frac{{x}^{2}}{2}$-y2=1有相同漸近線(xiàn),且與橢圓$\frac{y^2}{8}+\frac{x^2}{2}$=1有共同焦點(diǎn)的雙曲線(xiàn)方程是$\frac{{y}^{2}}{2}$-$\frac{{x}^{2}}{4}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.雙曲線(xiàn)$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1的離心率是$\frac{\sqrt{13}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.經(jīng)過(guò)點(diǎn)(3,-$\sqrt{2}$)的雙曲線(xiàn)$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1,其一條漸近線(xiàn)方程為y=$\frac{\sqrt{3}}{3}$x,該雙曲線(xiàn)的焦距為(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知雙曲線(xiàn)$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的一個(gè)焦點(diǎn)與拋物線(xiàn)x2=12y的焦點(diǎn)相同,則此雙曲線(xiàn)的漸近線(xiàn)方程為(  )
A.y=±$\frac{\sqrt{5}}{5}$xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=$±\frac{\sqrt{5}}{2}$xD.y=$±\sqrt{5}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.雙曲線(xiàn)$\frac{y^2}{12}-\frac{x^2}{4}=1$的焦點(diǎn)到漸近線(xiàn)的距離為(  )
A.1B.$\sqrt{3}$C.2D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.《九章算術(shù)》商功章有題:一圓柱形谷倉(cāng),高1丈3尺3$\frac{1}{3}$寸,容納米2000斛(1丈=10尺,l尺=10寸,斛為容積單位,l斛≈1.62立方尺,π≈3),則圓柱底圓周長(zhǎng)約為(  )
A.l丈3尺B.5丈4尺C.9丈2尺D.48丈6尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.某地決定在一個(gè)大型廣場(chǎng)建一個(gè)同心圓形花壇,花壇分為兩部分,中間小圓部分種植草坪,周?chē)膱A環(huán)分為n(n≥3,n∈N)等份種植紅、黃、藍(lán)三色不同的花.要求相鄰兩部分種植不同顏色的花.如圖①,圓環(huán)分成的3等份分別為a1,a2,a3,有6種不同的種植方法.如圖②,圓環(huán)分成的4等份分別為 a1,a2,a3,a4,有18種不同的種植方法;則在圖③中,圓環(huán)分成的5等份分別為a1,a2,a3,a4,a5,有30種不同的種植方法.

查看答案和解析>>

同步練習(xí)冊(cè)答案