分析 (1)(2)利用基本不等式與指數(shù)函數(shù)運算冪的性質即可求得答案.
解答 解:(1)∵x>y>0,且xy=1,
∴$\frac{{x}^{2}+{y}^{2}}{x-y}$=$\frac{{(x-y)}^{2}+2xy}{x-y}$=(x-y)+$\frac{2xy}{x-y}$=(x-y)+$\frac{2}{x-y}$≥2$\sqrt{2}$,
當且僅當x-y=$\frac{2}{x-y}$時“=”成立,
此時$\left\{\begin{array}{l}{x-y=\frac{2}{x-2}}\\{xy=1}\end{array}\right.$,解得:$\left\{\begin{array}{l}{x=\sqrt{2+\sqrt{3}}}\\{y=\sqrt{2-\sqrt{3}}}\end{array}\right.$;
(2)解:∵2a>0,2b>0,a+b=5,
∴2a+2b≥2$\sqrt{{2}^{a}{•2}^}$=2$\sqrt{{2}^{a+b}}$=2$\sqrt{{2}^{5}}$=8$\sqrt{2}$(當且僅當a=b=$\frac{5}{2}$時取“=”).
即2a+2b的最小值是8$\sqrt{2}$.
點評 本題考查基本不等式,考查指數(shù)函數(shù)運算冪的性質,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 有1個 | B. | 有2個 | C. | 有無數(shù)個 | D. | 至多有一個 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 7 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com