19.如圖,在△ABC中,∠ABC=90°,以AB為直徑的圓O交AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn),連接OD交圓O于點(diǎn)M.
(1)若∠EDO=30°,求∠AOD;
(2)求證:DE•BC=DM•AC+DM•AB.

分析 (1)連接BE,OE,由已知得∠ABC=90°=∠AEB,∠A=∠A,從而△AEB∽△ABC,進(jìn)而∠ABE=∠C,進(jìn)而∠BEO+∠DEB=∠DCE+∠CBE=90°,由此能證明DE是圓O的切線,利用∠EDO=30°,求∠AOD;
(2)DM=OD-OM=$\frac{1}{2}$(AC-AB),從而DM•AC+DM•AB=$\frac{1}{2}$(AC-AB)•(AC+AB)=$\frac{1}{2}$BC2,由此能證明DE•BC=DM•AC+DM•AB.

解答 (1)解:連接BE,OE.
∵AB是直徑,∴∠AEB=90°,
∵∠ABC=90°=∠AEB,∠A=∠A,∴△AEB∽△ABC,
∴∠ABE=∠C,
∵BE⊥AC,D為BC的中點(diǎn),∴DE=BD=DC,
∴∠DEC=∠DCE=∠ABE=∠BEO,∠DBE=∠DEB,
∴∠BEO+∠DEB=∠DCE+∠CBE=90°,
∴∠OED=90°,∴DE是圓O的切線.
∵∠EDO=30°,
∴∠DBE=∠DEB=∠A=60°,
∴∠AOD=120°;
(2)證明:∵O、D分別為AB、BC的中點(diǎn),
∴DM=OD-OM=$\frac{1}{2}$(AC-AB),
∴DM•AC+DM•AB
=DM•(AC+AB)
=$\frac{1}{2}$(AC-AB)•(AC+AB)
=$\frac{1}{2}$(AC2-AB2
=$\frac{1}{2}$BC2
=DE•BC.
∴DE•BC=DM•AC+DM•AB.

點(diǎn)評(píng) 本題考查DE•BC=DM•AC+DM•AB的證明,考查學(xué)生分析解決問題的能力,是中檔題,解題時(shí)要認(rèn)真審題,注意弦切角定理的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知定義在R上的函數(shù)f(x)=|x-m|+|x|,m∈N*,存在實(shí)數(shù)x使f(x)<2成立.
(Ⅰ)求實(shí)數(shù)m的值;
(Ⅱ)若α,β>1,f(α)+f(β)=2,求證:$\frac{4}{α}$+$\frac{1}{β}$≥$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R,都有f(x+2)=f(x).當(dāng)-1≤x≤0時(shí),f(x)=-x2,若直線y=-x+m與函數(shù)y=f(x)的圖象有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的值為( 。
A.2k-$\frac{1}{4}$(k∈Z)B.2k+$\frac{1}{4}$(k∈Z)C.2k或2k-$\frac{1}{4}$(k∈Z)D.2k或2k+$\frac{1}{4}$(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.2015年高中生技能大賽中三所學(xué)校分別有3名、2名、1名學(xué)生獲獎(jiǎng),這6名學(xué)生要排成一排合影,則同校學(xué)生排在一起的概率是( 。
A.$\frac{1}{30}$B.$\frac{1}{15}$C.$\frac{1}{10}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.對(duì)角線的長(zhǎng)為$\sqrt{3}$的正方體的表面積為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知表面積為24π的球體,其內(nèi)接正四棱柱(底面是正方形,側(cè)棱垂直于底面)的高為4,則這個(gè)正四棱柱的側(cè)面積為(  )
A.32B.36C.48D.64

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知某幾何體的三視圖如圖所示,則該幾何體的表面積( 。
A.6B.$6+2\sqrt{3}$C.$8+8\sqrt{2}$D.$4+4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知三棱柱ABC-A1B1C1的側(cè)面BCC1B1是菱形,D為A1C1的中點(diǎn),B1C⊥A1B.
(Ⅰ)求證:平面AB1C垂直平面A1BC1
(Ⅱ)求證:A1B∥平面B1CD;
(Ⅲ)若AB=AC=BC=AB1=B1C=2,求三棱柱ABC-A1B1C1的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.每年七夕,琳瑯滿目的飾品在各大品牌店中成為年輕人親瞇的對(duì)象,這也使各大珠寶公司挖空心思,設(shè)計(jì)出匠心獨(dú)運(yùn)的飾品.某珠寶公司市場(chǎng)專員甲對(duì)該公司的一款項(xiàng)鏈的單價(jià)x(百元)和單位時(shí)間內(nèi)的銷售量y(件)之間的關(guān)系作出價(jià)格分析,所得數(shù)據(jù)如下:
單價(jià)x(百元) a1a2a3 a4 a5 
 單位時(shí)間內(nèi)銷售量y(件) 14 13 10 75
其中價(jià)格x(元)恰為公差為2的等差數(shù)列{an}的前5項(xiàng),且等差數(shù)列{an}的前10項(xiàng)和為230.
(1)請(qǐng)根據(jù)上述數(shù)據(jù)在下列網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請(qǐng)根據(jù)表格數(shù)據(jù)計(jì)算項(xiàng)鏈的單價(jià)x(百元)和單位時(shí)間內(nèi)的銷售量y(件)之間的回歸直線方程.
$\left\{\begin{array}{l}{\stackrel{∧}=\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}=\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}}\\{\stackrel{∧}{a}=\overline{y}-\stackrel{∧}\overline{x}}\end{array}\right.$.

查看答案和解析>>

同步練習(xí)冊(cè)答案