10.設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且對(duì)任意的x∈R,都有f(x+2)=f(x).當(dāng)-1≤x≤0時(shí),f(x)=-x2,若直線y=-x+m與函數(shù)y=f(x)的圖象有兩個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的值為( 。
A.2k-$\frac{1}{4}$(k∈Z)B.2k+$\frac{1}{4}$(k∈Z)C.2k或2k-$\frac{1}{4}$(k∈Z)D.2k或2k+$\frac{1}{4}$(k∈Z)

分析 根據(jù)條件求出函數(shù)的周期是2,以及一個(gè)周期上的解析式,作出兩個(gè)函數(shù)的圖象,利用數(shù)形結(jié)合進(jìn)行求解即可.

解答 解:∵f(x+2)=f(x).
∴函數(shù)的周期是2,
若0≤x≤1,則-1≤-x≤0,
則f(-x)=-x2,
∵函數(shù)f(x)是偶函數(shù),
∴f(-x)=-x2=f(x),
即f(x)=-x2,0≤x≤1,
作出函數(shù)f(x)的圖象如圖:
作出直線y=-x+m,
在一個(gè)周期[-1,1]內(nèi),當(dāng)直線經(jīng)過(guò)點(diǎn)(1,-1)時(shí),兩個(gè)函數(shù)有兩個(gè)交點(diǎn),此時(shí)m=0,
當(dāng)直線與y=-x2相切時(shí),兩個(gè)函數(shù)有兩個(gè)交點(diǎn),
由-x2=-x+m得x2-x+m=0,
由判別式△=0,即1-4m=0,
得m=$\frac{1}{4}$,
∵函數(shù)的周期是2k,
∴m=2k或2k+$\frac{1}{4}$(k∈Z),
故選:D.

點(diǎn)評(píng) 本題主要考查函數(shù)與方程的應(yīng)用,根據(jù)條件判斷函數(shù)的周期性,以及利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知等比數(shù)列{an}中,各項(xiàng)都是正數(shù),且3a1,$\frac{1}{2}{a_3}$,2a2成等差數(shù)列,則$\frac{{{a_8}+{a_9}}}{{{a_6}+{a_7}}}$等于( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.若點(diǎn)(a,27)在函數(shù)y=x3的圖象上,則tan$\frac{π}{a}$的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.某校高一年級(jí)有學(xué)生400人,高二年級(jí)有學(xué)生360人,現(xiàn)采用分層抽樣的方法從全校學(xué)生中抽出55人,其中從高一年級(jí)學(xué)生中抽出20人,則從高三年級(jí)學(xué)生中抽取的人數(shù)為17.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|log_2x|,0<x<2}\\{cos(\frac{π}{2}-\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在實(shí)數(shù)x1,x2,x3,x4滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則x1x2(x3-1)(x4-1)的取值范圍是(  )
A.B.(9,21)C.(21,25)D.(9,25)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,在正方體ABCD-A1B1C1D1中,P為棱DC的中點(diǎn),則D1P與BC1所在的直線所成角的余弦值等于$\frac{\sqrt{10}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知向量$\overrightarrow{a}$,$\overrightarrow$的夾角為$\frac{3π}{4}$,|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=2,則$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,在△ABC中,∠ABC=90°,以AB為直徑的圓O交AC于點(diǎn)E,點(diǎn)D是BC邊的中點(diǎn),連接OD交圓O于點(diǎn)M.
(1)若∠EDO=30°,求∠AOD;
(2)求證:DE•BC=DM•AC+DM•AB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知點(diǎn)(x,y)滿足(x-1)2+(y-1)2≤1,則滿足(y-x)(y-$\frac{1}{x}$)≥0的概率為( 。
A.$\frac{π}{2}$B.$\frac{4}{7}$πC.$\frac{1}{2}$D.$\frac{4}{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案