4.已知直線Ax+By+1=0.若A,B是從-3,-1,0,2,7這5個數(shù)中選取的不同的兩個數(shù),則直線的斜率小于0的概率為$\frac{1}{5}$.

分析 先求出基本事件總數(shù),由直線的斜率k=-$\frac{A}{B}$<0,得A,B同號,利用列舉法求出A,B的可能取值的情況,由此能求出直線的斜率小于0的概率.

解答 解:∵直線Ax+By+1=0,A,B是從-3,-1,0,2,7這5個數(shù)中選取的不同的兩個數(shù),
∴基本事件總數(shù)n=${A}_{5}^{2}$=20,
∵直線的斜率p=-$\frac{A}{B}$<0,
∴A,B同號,
∴A,B的可能取值為(-3,-1),(-1,-3),(2,7),(7,2),共4個,
∴直線的斜率小于0的概率k=$\frac{4}{20}=\frac{1}{5}$.
故答案為:$\frac{1}{5}$.

點評 本題考查概率的求法,是基礎(chǔ)題,解題時要認真審題,注意直線的性質(zhì)和列舉法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.直線x+y=1與曲線y=$\sqrt{a-{x}^{2}}$(a>0)恰有一個公共點,則a的取值范圍是(  )
A.a=$\frac{1}{2}$B.a>1或a=$\frac{1}{2}$C.$\frac{1}{2}$≤a<1D.$\frac{1}{2}$<a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.求以點C(2,1)為圓心,且與直線4x-3y=0相切的圓的方程(x-2)2+(y-1)2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)P為橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)上任一點,F(xiàn)1,F(xiàn)2為橢圓的焦點,|PF1|+|PF2|=4,離心率為$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)直線l:y=kx+m(m≠0)經(jīng)過點(-1,0),且與橢圓交于P、Q兩點,若直線OP,PQ,OQ的斜率依次成等比數(shù)列,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖所示,已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0),⊙O:x2+y2=b2,點A、F分別是橢圓C的左頂點和左焦點,點P是⊙O上的動點,且$\frac{{|{PA}|}}{{|{PF}|}}$為定值,則橢圓C的離心率為( 。
A.$\frac{{\sqrt{2}-1}}{2}$B.$\frac{{\sqrt{3}-1}}{2}$C.$\frac{1}{2}$D.$\frac{{\sqrt{5}-1}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.甲、乙、丙三人進行羽毛球練習(xí)賽,其中兩人比賽,另一人當(dāng)裁判,每局比賽結(jié)束時,負的一方在下一局當(dāng)裁判,假設(shè)每局比賽中,甲勝乙的概率為$\frac{1}{2}$,甲勝丙、乙勝丙的概率都為$\frac{2}{3}$,各局比賽的結(jié)果都相互獨立,第1局甲當(dāng)裁判.
(1)求第3局甲當(dāng)裁判的概率;
(2)記前4局中乙當(dāng)裁判的次數(shù)為X,求X的概率分布與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知x>0,y>0,z>0,且xyz=1,求證:x3+y3+z3≥xy+yz+xz.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,A(2,0)是橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)長軸右端點,點B,C在橢圓C上,BC過橢圓O,$\overrightarrow{AC}$•$\overrightarrow{BC}$=0,|$\overrightarrow{OC}$|=|$\overrightarrow{AC}$|,M,N為橢圓上異于A,B的不同兩點,∠MCN的角平分線垂直于x軸.
(Ⅰ)求橢圓方程;
(Ⅱ)問是否存在實數(shù)λ,使得$\overrightarrow{MN}$=λ$\overrightarrow{BA}$,若存在,求出λ的最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知離散型隨機變量X的可能取值為x1=-1,x2=0,x3=1,且E(X)=0.1,D(X)=0.89,則對應(yīng)x1,x2,x3的概率p1,p2,p3分別為0.4,0.1,0.5.

查看答案和解析>>

同步練習(xí)冊答案