16.已知x>0,y>0,z>0,且xyz=1,求證:x3+y3+z3≥xy+yz+xz.

分析 根據(jù)算術(shù)平均數(shù)不小于其幾何平均數(shù)可得:x3+y3+z3≥3xyz,x3+y3+1≥3xy,y3+z3+1≥3yz,x3+z3+1≥3xz,相加得出結(jié)論.

解答 證明:因?yàn)閤>0,y>0,z>0
所以x3+y3+z3≥3xyz,x3+y3+1≥3xy,y3+z3+1≥3yz,x3+z3+1≥3xz
將以上各式相加,得3x3+3y3+3z3+3≥3xyz+3xy+3yz+3xz
又因?yàn)閤yz=1,從而x3+y3+z3≥xy+yz+xz.

點(diǎn)評 考查了算術(shù)平均數(shù)不小于其幾何平均數(shù)和對不等式的特殊變換.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某中學(xué)有初中學(xué)生1800人,高中學(xué)生1200人.為了解學(xué)生本學(xué)期課外閱讀時間,現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計了他們課外閱讀時間,然后按“初中學(xué)生”和“高中學(xué)生”分為兩組,再將每組學(xué)生的閱讀時間(單位:小時)分為5組:[0,10),[10,20),[20,30),[30,40),[40,50],并分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.
(Ⅰ)寫出a的值;
(Ⅱ)試估計該校所有學(xué)生中,閱讀時間不小于30個小時的學(xué)生人數(shù);
(Ⅲ)從閱讀時間不足10個小時的樣本學(xué)生中隨機(jī)抽取2人,求至少抽到1名高中生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x+1|+|x-2|,不等式f(x)≥t對?x∈R恒成立.
(1)求t的取值范圍;
(2)記t的最大值為T,若正實(shí)數(shù)a,b滿足a2+b2=T,求證:$\frac{2}{{\frac{1}{a}+\frac{1}}}$≤$\frac{{\sqrt{6}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知直線Ax+By+1=0.若A,B是從-3,-1,0,2,7這5個數(shù)中選取的不同的兩個數(shù),則直線的斜率小于0的概率為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.設(shè)a,b,c∈R,證明:a2+b2+c2≥ab+ac+bc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)實(shí)數(shù)a1,a2,…,an滿足a1+a2+…+an=0,且|a1|+|a2|+…+|an|≤1(n∈N*且n≥2),令bn=$\frac{a_n}{n}$(n∈N*).求證:|b1+b2+…+bn|≤$\frac{1}{2}-\frac{1}{2n}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.第31屆夏季奧林匹克運(yùn)動會將于2016年8月5日-21日在巴西里約熱內(nèi)盧舉行,下表是近五屆奧運(yùn)會中國代表團(tuán)獲得的金牌數(shù)的統(tǒng)計表(單位:枚)
屆次第26屆(亞特蘭大)  第27屆(悉尼)第28屆(雅典)  第29屆(北京)第30屆(倫敦) 
 序號x 2 3 4 5
 金牌數(shù)y 1628  3251 38
(1)某同學(xué)利用地1、2、3、5四組數(shù)據(jù)建立金牌數(shù)$\stackrel{∧}{y}$關(guān)于序號x的回歸方程為$\stackrel{∧}{y}$=5.0857x+14.514,據(jù)此回歸方程預(yù)測第31屆夏季奧運(yùn)會中國隊獲得的金牌數(shù)(計算結(jié)果四舍五入,保留整數(shù));
(2)試根據(jù)上述五組數(shù)據(jù)建立金牌數(shù)$\stackrel{∧}{y}$關(guān)于序號x的回歸方程,并據(jù)求得的回歸方程預(yù)測第31屆夏季奧林匹克運(yùn)動會中國隊獲得的金牌數(shù)(計算結(jié)果四舍五入,保留整數(shù));
(3)利用(2)的結(jié)論填寫下表(結(jié)算結(jié)果四舍五入,保留整數(shù)):
 屆次 第26屆(亞特蘭大)  第27屆(悉尼) 第28屆(雅典)  第29屆(北京) 第30屆(倫敦)
 序號x 1 2 3 4 5
 金牌數(shù)y 16 28 32 51 38
 預(yù)測值$\stackrel{∧}{y}$     
 y-$\stackrel{∧}{y}$    
如果|y-$\stackrel{∧}{y}$|≤4,則稱(2)中的方程對該屆夏季奧林匹克運(yùn)動會中國隊獲得金牌數(shù)是“特效”的,否則稱為“非特效”的,現(xiàn)從上述五屆奧運(yùn)會中任取三屆,記(2)中的回歸直線方程為“特效”的屆數(shù)為X,求X的分布列和數(shù)學(xué)期望.
參考公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-x)({y}_{i}-y)}{({x}_{i}-x)^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}{y}_{i})-n\overline{xy}}{{\sum_{i=1}^{n}x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.甲、乙兩運(yùn)動員進(jìn)行射擊訓(xùn)練,已知他們擊中的環(huán)數(shù)都穩(wěn)定在8,9,10環(huán),且每次射擊成績互不影響.從射擊成績中分別隨機(jī)抽查了20個數(shù)據(jù).
甲  8 8 8 8 9 9 9 9  9 9 9 9  9  10 10 10 10  10 10 10 
乙  8 8 8 8  8 9 9 9  9 9 9 9  9  10 10 10 10  10 10 10
若將頻率視為概率,回答下列間題.
(I)畫出甲、乙兩運(yùn)動員射擊環(huán)數(shù)的頻率分布條形圖;
(Ⅱ)甲、乙兩運(yùn)動員各自射擊1次,記事件C:“甲射擊的環(huán)數(shù)高于乙射擊的環(huán)數(shù)”,求C的概率;
(Ⅲ)甲、乙兩運(yùn)動員各自射擊1次,ξ表示這2次射擊中擊中10環(huán)的次數(shù),求ξ的分布列及Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.長為6的線段AB的兩端A、B分別在x軸的正半軸、y軸的正半軸上滑動(正半軸包括原點(diǎn)),P為線段AB上的點(diǎn),且AP:PB=2:1,設(shè)∠xAP=α為參數(shù),則點(diǎn)P的軌跡的參數(shù)方程是$\left\{\begin{array}{l}{x=-2cosα}\\{y=\frac{4}{3}sinα}\end{array}\right.$(α為參數(shù),90°<α<180°).

查看答案和解析>>

同步練習(xí)冊答案