【題目】在等腰梯形中,,直線平面,,點為的中點,且,.
(1)求證:平面;
(2)求證:平面平面;
(3)求直線與平面所成角的正弦值.
【答案】(1)見解析(2)見解析(3)
【解析】分析:(1)取FC中點N,連接EN,推導出四邊形EDCN是平行四邊形,從而ENDC,連接NG,推導出四邊形EAGN是平行四邊形,從而EA∥NG,由此能證明AE∥平面GCF.
(2)由DCAG,得四邊形AGCD為平行四邊形,從而AD=GC,推導出AC⊥BC,AC⊥CF,從而AC⊥平面BCF,由此能證明平面ACF⊥平面BCF.
(3)推導出ED∥平面GCF,AE∥平面GCF,從而平面ADE∥平面GCF,進而直線FB與平面ADE所成角也為直線FB與平面GCF所成角.由此能求出直線FB與平面ADF所成角正弦值.
詳解:(1)證明:取中點,連接,因為,,所以平行且等于,
所以四邊形是平行四邊形,所以平行且等于,
連接平行且等于,又平行且等于,
所以平行且等于,所以四邊形是平行四邊形,所以,
又平面,平面,所以平面.
(2)∵平行且等于,∴四邊形為平行四邊形,
∴,
∵,∴,
∵,∴為等邊三角形,
∵,
∴,由余弦定理得
,
所以即,
所以,又,,
所以平面,又平面,
所以平面平面.
(3)因為,平面,平面,所以平面,
由(1)知平面,且,所以平面平面,
所以直線與平面所成角也為直線與平面所成角.
由(2)知,設(shè)為中點,連接,所以.
因為平面,所以,因為,
所以平面,
所以為直線與平面所成角,
因為,
在直角中,,
所以直線與平面所成角的正弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】將函數(shù)的圖象向右平移()個單位長度后得到函數(shù)的圖象,若在區(qū)間上單調(diào)遞增,則實數(shù)的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在極坐標系中,曲線,,C與l有且僅有一個公共點.
(Ⅰ)求a;
(Ⅱ)O為極點,A,B為C上的兩點,且,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的方程為.以坐標原點為極點, 軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.
(1)寫出曲線的參數(shù)方程和曲線的直角坐標方程;
(2)設(shè)點在曲線上,點在曲線上,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù).
(1)求曲線在點處的切線方程;
(2)若函數(shù)在上恰有2個零點,求的取值范圍;
(3)當時,若對任意的正整數(shù)在區(qū)間上始終存在個整數(shù)使得成立,試問:正整數(shù)是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】二手車經(jīng)銷商小王對其所經(jīng)營的型號二手汽車的使用年數(shù)與銷售價格(單位:萬元/輛)進行整理,得到如下數(shù)據(jù):
使用年數(shù) | ||||||
售價 | ||||||
下面是關(guān)于的折線圖:
(1)由折線圖可以看出,可以用線性回歸模型擬合與的關(guān)系,請用相關(guān)系數(shù)加以說明;
(2)求關(guān)于的回歸方程并預測某輛型號二手車當使用年數(shù)為年時售價約為多少?(、小數(shù)點后保留兩位有效數(shù)字)
(3)基于成本的考慮,該型號二手車的售價不得低于元,請根據(jù)(2)求出的回歸方程預測在收購該型號二手車時車輛的使用年數(shù)不得超過多少年?
參考數(shù)據(jù):
,,,
,,
,,.
參考公式:回歸直線方程中斜率和截距的最小二乘估計公式分別為:
,.
,、為樣本平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:與圓M:的一個公共點為.
(1)求橢圓C的方程;
(2)過點M的直線l與橢圓C交于A、B兩點,且A是線段MB的中點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,以軸正半軸為極軸建立極坐標系,曲線的極坐標方程為,直線與曲線交于兩點.
(1)求直線l的普通方程和曲線的直角坐標方程;
(2)已知點的極坐標為,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com