分析 設(shè)棱錐的高為SO,則由正三角形中心的性質(zhì)可得AC⊥OB,AC⊥SO,于是AC⊥平面SBO,得SB⊥AC,結(jié)合SB⊥AM可證SB⊥平面SAC,同理得出SA,SB,SC兩兩垂直,從而求得側(cè)棱長(zhǎng),計(jì)算出體積.外接球的球心N在直線SO上,設(shè)SN=BN=r,則ON=|SO-r|,利用勾股定理列方程解出r.
解答 解:設(shè)O為S在底面ABC的投影,則O為等邊三角形ABC的中心,
∵SO⊥平面ABC,AC?平面ABC,
∴AC⊥SO,又BO⊥AC,
∴AC⊥平面SBO,∵SB?平面SBO,
∴SB⊥AC,又AM⊥SB,AM?平面SAC,AC?平面SAC,AM∩AC=A,
∴SB⊥平面SAC,
同理可證SC⊥平面SAB.
∴SA,SB,SC兩兩垂直.
∵△SOA≌△SOB≌△SOC,
∴SA=SB=SC,
∵AB=2$\sqrt{2}$,∴SA=SB=SC=2.
∴三棱錐的體積V=$\frac{1}{3}{S}_{△SAC}•SB$=$\frac{1}{3}×\frac{1}{2}×2×2×2=\frac{4}{3}$.
設(shè)外接球球心為N,則N在SO上.
∵BO=$\frac{2}{3}×\frac{\sqrt{3}}{2}AB$=$\frac{2\sqrt{6}}{3}$.∴SO=$\sqrt{S{B}^{2}-B{O}^{2}}$=$\frac{2\sqrt{3}}{3}$,
設(shè)外接球半徑為r,則NO=SO-r=$\frac{2\sqrt{3}}{3}$-r,NB=r,
∵OB2+ON2=NB2,∴$\frac{8}{3}$+($\frac{2\sqrt{3}}{3}-r$)2=r2,解得r=$\sqrt{3}$.
∴外接球的表面積S=4π×3=12π.
故答案為:$\frac{4}{3}$,12π.
點(diǎn)評(píng) 本題考查了正棱錐的結(jié)構(gòu)特征,棱錐與外接球的關(guān)系,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相交且垂直 | B. | 平行直線 | C. | 異面直線 | D. | 相交不垂直 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
$\overrightarrow x$ | $\overrightarrow y$ | $\overrightarrow w$ | $\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)2 | $\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)2 | $\sum_{i=1}^8{\;}$(x1-$\overrightarrow x$)(y-$\overrightarrow y$) | $\sum_{i=1}^8{\;}$(w1-$\overrightarrow w$)(y-$\overrightarrow y$) |
46.6 | 56.3 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
使用年限x | 1 | 2 | 3 | 4 | 5 |
維修費(fèi)用y | 1.3 | 2.5 | 4.0 | 5.6 | 6.6 |
A. | 12.86 | B. | 13.38 | C. | 13.59 | D. | 15.02 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com