9.球的半徑擴(kuò)大為原來的2倍,則其表面積擴(kuò)大為原來的( 。
A.2倍B.4倍C.6倍D.8倍

分析 設(shè)球原來的半徑為 r,則擴(kuò)大后的半徑為 2r,求出球原來的面積和后來的面積,計算球后來的面積
與球原來的面積之比

解答 解:設(shè)球原來的半徑為 r,則擴(kuò)大后的半徑為 2r,球原來的面積為4πr2,
球后來的面積為4π(2r)2=16πr2,
球后來的體積與球原來的面積之比為1:4,
故選:B.

點評 本題考查球的面積的計算公式的應(yīng)用,關(guān)鍵是設(shè)出原來的半徑,求出后來的半徑,屬于中檔題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知α∩β=a,b?β且b∩a=A,c?α且c∥a,則b與c的位置關(guān)系( 。
A.相交且垂直B.平行直線C.異面直線D.相交不垂直

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,四邊形ABCD是邊長為2的菱形,∠ABC=60°,PA⊥平面ABCD,
E為PC中點.
(Ⅰ)求證:平面BED⊥平面ABCD;
(Ⅱ)若∠BED=90°,求三棱錐E-BDP的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知某一起的使用年限x(年)和其維修費用y(萬元)的統(tǒng)計數(shù)據(jù);
使用年限x12345
維修費用y1.32.54.05.66.6
由散點圖知y對x具有線性相關(guān)關(guān)系,利用線性回歸方程估計使用年限為10年時,維修費用為( 。┤f元.
A.12.86B.13.38C.13.59D.15.02

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖所示,四棱錐P-ABCD的底面為直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E為AB的中點.
(1)求證:平面PDE⊥平面PAC;
(Ⅱ)求直線PC與平面PDE所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.由矩形ABCD與梯形AFEB構(gòu)成平面多邊形(如圖1),O為AB中點,且AB∥EF,AB=2EF,現(xiàn)將平面多邊形沿AB折起,使矩形ABCD與梯形AFEB所在平面所成二面角為直二面角(如圖2).
(1)若點P為CF的中點,求證:OP∥平面DAF;
(2)過點C,B,F(xiàn)的平面將多面體EFADCB分割成兩部分,求兩部分體積的比值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.甲、乙、丙三人參加一個擲硬幣的游戲,每一局三人各擲硬幣一次;當(dāng)有一人擲得的結(jié)果與其他二人不同時,此人就出局且游戲終止;否則就進(jìn)入下一局,并且按相同的規(guī)則繼續(xù)進(jìn)行游戲;規(guī)定進(jìn)行第十局時,無論結(jié)果如何都終止游戲.已知每次擲硬幣中正面向上與反面向上的概率都是$\frac{1}{2}$,則下列結(jié)論中
①第一局甲就出局的概率是$\frac{1}{3}$;②第一局有人出局的概率是$\frac{1}{2}$;
③第三局才有人出局的概率是$\frac{3}{64}$;④若直到第九局才有人出局,則甲出局的概率是$\frac{1}{3}$;
⑤該游戲在終止前,至少玩了六局的概率大于$\frac{1}{1000}$.
正確的是( 。
A.①②B.②④⑤C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖所示的幾何體中,四邊形ABCD為梯形,AD∥BC,AB⊥底面BEC,EC⊥CB,已知BC=2,AD=AB=EC=1.
(Ⅰ)證明:BD⊥面DEC;
(Ⅱ)求AE與平面CDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.加工某種零件分三道工序,做第一道工序有5人,做第二道工序有6人,做第三道工序有4人,從中選3人,每人做一道工序,則選法總數(shù)是120.

查看答案和解析>>

同步練習(xí)冊答案