20.二次函數(shù)y=ax2+bx+c(x∈R)的部分對應值如表:
x-3-2-101234
y-6046640-6
則一元二次不等式ax2+bx+c>0的解集是( 。
A.{x|x<-2,或x>3}B.{x|x≤-2,或x≥3}C.{x|-2<x<3}D.{x|-2≤x≤3}

分析 根據(jù)二次函數(shù)y=ax2+bx+c(x∈R)的部分對應值表,得出對應一元二次不等式ax2+bx+c>0的解集.

解答 解:根據(jù)二次函數(shù)y=ax2+bx+c(x∈R)的部分對應值表知,
a<0,且x=-2時,y=0;
x=3時,y=0;
∴一元二次不等式ax2+bx+c>0的解集是{x|-2<x<3}.
故選:C.

點評 本題考查了二次函數(shù)與對應一元二次不等式的應用問題,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.為了打好脫貧攻堅戰(zhàn),某貧困縣農(nóng)科院針對玉米種植情況進行調(diào)研,力爭有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對已選出的一組玉米的莖高進行統(tǒng)計,獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯誤概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關(guān)?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)
(2)為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再從這5株玉米中選取2株進行雜交試驗,選取的植株均為矮莖的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.近年來我國電子商務行業(yè)迎來篷勃發(fā)展的新機遇,2016年雙11期間,某購物平臺的銷售業(yè)績高達一千多億人民幣.與此同時,相關(guān)管理部門推出了針對電商的商品和服務的評價體系.現(xiàn)從評價系統(tǒng)中選出200次成功交易,并對其評價進行統(tǒng)計,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(Ⅰ)請完成如下列聯(lián)表;
對服務好評對服務不滿意合計
對 商品 好評
對商品不滿意
合    計
(Ⅱ)是否可以在犯錯誤的概率不超過0.1%的前提下,認為商品好評與服務好評有關(guān)?
(Ⅲ)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進行客戶回訪,求只有一次好評的概率.
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列函數(shù)在(0,+∞)上是減函數(shù)的是( 。
A.f(x)=lnxB.f(x)=e-xC.$f(x)=\sqrt{x}$D.$f(x)=-\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=x3-3x2+8.
(Ⅰ)求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)求f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.如圖,樣本數(shù)為9的三組數(shù)據(jù),它們的平均數(shù)都是5,頻率條形圖如下,則標準差最大的一組是圖3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列對于函數(shù)f(x)=2+2cos2x,x∈(0,3π)的判斷不正確的是( 。
A.對于任意x∈(0,3π),都有f(x1)≤f(x)≤f(x2),則|x1-x2|的最小值為$\frac{π}{2}$
B.存在a∈R,使得函數(shù)f(x+a)為偶函數(shù)
C.存在x0∈(0,3π),使得f(x0)=4
D.函數(shù)f(x)在區(qū)間$[\frac{π}{2},\frac{5π}{4}]$內(nèi)單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在正方體ABCD-A1B1C1D1內(nèi)隨機取點,則該點落在三棱錐A1-ABC內(nèi)的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.運行如圖所示的程序,輸出的結(jié)果為( 。
A.12B.10C.9D.8

查看答案和解析>>

同步練習冊答案