7.若扇形的周長為16cm,圓心角為2rad,則該扇形的面積為16cm2

分析 設(shè)扇形的半徑為r,弧長為l,根據(jù)扇形周長和弧長公式列式,解之得r=4,l=8,再由扇形面積公式可得扇形的面積S.

解答 解 設(shè)扇形的半徑為r,弧長為l,則有$\left\{\begin{array}{l}{2r+l=16}\\{l=2r}\end{array}\right.$,得r=4,l=8,
故扇形的面積為S=$\frac{1}{2}lr=\frac{1}{2}×8×4$=16.
故答案為:16.

點評 本題給出扇形的周長和圓心角的大小,求扇形的面積,著重考查了扇形的面積公式和弧長公式等知識,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

17.用反正弦函數(shù)值的形式表示各式中的x:
(1)sinx=$\frac{\sqrt{3}}{5}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(2)sinx=-$\frac{1}{4}$,x∈[-$\frac{π}{2}$,$\frac{π}{2}$];
(3)sinx=$\frac{1}{7}$,x∈[-$\frac{π}{2}$,π];
(4)sinx=$\frac{\sqrt{3}}{3}$,x∈[0,π];
(5)sinx=-$\frac{2}{5}$,x∈(π,$\frac{3}{2}$π);
 (6)sinx=-$\frac{2}{5}$,x∈(π,2π)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知S1=$\int_1^2$xdx,S2=$\int_1^2$exdx,S3=$\int_1^2$x2dx,則S1,S2,S3的大小關(guān)系為( 。
A.S1<S2<S3B.S1<S3<S2C.S3<S2<S1D.S2<S3<S1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知角θ的頂點在坐標原點,始邊為x軸的正半軸,若A(x,-1)是角θ終邊上的一點,且cosθ=$\frac{2\sqrt{5}}{5}$,則x的值為( 。
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知整數(shù)x,y滿足不等式$\left\{\begin{array}{l}y≥x\\ x+y≥4\\ x-2y+8≥0\end{array}\right.$,則2x+y的最大值是24;x2+y2的最小值是8.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.與向量$\overrightarrow{a}$=(5,12)平行的單位向量為±($\frac{5}{13}$,$\frac{12}{13}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.cos(-$\frac{17}{3}$π)的值等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.若復數(shù)z=a-$\sqrt{2}$+3i為純虛數(shù),其中a∈R,i為虛數(shù)單位,則$\frac{a+{i}^{2007}}{1+ai}$的值為-i.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知等比數(shù)列{an}中,各項都是正數(shù),且a1,$\frac{1}{2}$a3,2a2成等差數(shù)列,則$\frac{{a}_{2}}{{a}_{1}-{a}_{3}}$=( 。
A.1B.2C.-$\frac{1}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

同步練習冊答案