【題目】如圖,設(shè)銳角的外接圓的半徑為,在內(nèi)取外接圓的同心圓,其半徑為 ,從圓上任取一點,作于點,于點,于點

(1)求證:的面積為定值;

(2)猜想:當(dāng)為任意三角形、同心圓為任意同心圓時,結(jié)論是否成立(不要求證明)?

【答案】(1)見解析;(2)見解析

【解析】

(1)如圖,聯(lián)結(jié)交外接圓于點,聯(lián)結(jié)交外接圓于點,過作直徑

由相交弦定理有

又由,知、、四點共圓.則

同理,由,,有,

、、、四點共圓知

,

由式③、⑤、⑥有

把式⑦、⑧代入,由正弦定理得

把①、②、④、⑨代入的面積公式有

(定值).

(2)當(dāng)為任意三角形、同心圓為任意同心圓時,結(jié)論成立.證明是類似的.當(dāng)點在外接圓上時,面積為零,得三點共線(西姆松線).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形剪一刀(截痕不過多邊形的頂點)分割為個多邊形,再將其中一個多邊形剪一刀(截痕不過多邊形的頂點)又分割出一個多邊形,……如此下去。如果從一個正方形開始,要剪出一個三角形,一個四邊形,一個五邊形,……一個邊形,那么,所需要剪的最少刀數(shù)為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線的參數(shù)方程為:為參數(shù),在以坐標(biāo)原點為極點,x軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為:,直線與曲線交于A,B兩點,

求曲線的普通方程及的最小值;

若點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:

質(zhì)量指標(biāo)值分組

[75,85)

[85,95)

[95,105)

[105,115)

[115,125)

頻數(shù)

6

26

38

22

8

I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:

II)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%的規(guī)定?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖是一個的方格(其中心的方格線已被劃去).一只青蛙停在格處,從某一時刻起,青蛙每隔一秒鐘就跳到與它所在方格有公共邊的另一方格內(nèi),直至跳到格才停下..若青蛙經(jīng)過每一個方格不超過一次,則青蛙的跳法總數(shù)為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求曲線y=fx)在點處的切線與坐標(biāo)軸圍成的三角形的面積;

2)求過點作曲線y=fx)的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在一場娛樂晚會上,有5位民間歌手(15號)登臺演唱,由現(xiàn)場數(shù)百名觀眾投票選出最受歡迎歌手.各位觀眾須彼此獨(dú)立地在選票上選3名歌手,其中觀眾甲是1號歌手的歌迷,他必選1號,不選2號,另在35號中隨機(jī)選2.觀眾乙對5位歌手的演唱沒有偏愛,因此在15號中隨機(jī)選3名歌手.

1)求觀眾甲選中3號歌手的概率;

2表示3號歌手得到觀眾甲、乙的票數(shù)之和,求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某公司成本為元,所得的利潤元的幾組數(shù)據(jù)入下.

第一組

第二組

第三組

第四組

第五組

1

4

5

2

3

2

1

3

4

0

根據(jù)上表數(shù)據(jù)求得回歸直線方程為:

1)若這個公司所規(guī)劃的利潤為200萬元,估算一下它的成本可能是多少?(保留1位小數(shù))

2)在每一組數(shù)據(jù)中,,相差,記為事件;,相差,記為事件;,相差,記為事件.隨機(jī)抽兩組進(jìn)行分析,則抽到有事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱柱中,,,

求證:面;

,在線段上是否存在一點,使二面角的平面角的余弦值為?若存在,確定點的位置;若不存在,說明理由

查看答案和解析>>

同步練習(xí)冊答案