A. | 20π | B. | $\frac{{20\sqrt{5}π}}{3}$ | C. | 5π | D. | $\frac{{5\sqrt{5}π}}{6}$ |
分析 作出六棱柱的最大對角面與外截球的截面,設(shè)正六棱柱的上下底面中心分別為O1,O2,球心為O,一個頂點為A,如右圖.可根據(jù)題中數(shù)據(jù)結(jié)合勾股定理算出球的半徑OA,再用球的體積公式即可得到外接球的體積.
解答 解:作出六棱柱的最大對角面與外截球的截面,如右圖,則該截面矩形分別以底面外接圓直徑和六棱柱高為兩邊,
設(shè)球心為O,正六棱柱的上下底面中心分別為O1,O2,則球心O是O1,O2的中點.
∵正六棱柱底面邊長為1,側(cè)棱長為1,
∴Rt△AO1O中,AO1=1,O1O=$\frac{1}{2}$,可得AO=$\sqrt{{1}^{2}+({\frac{1}{2})}^{2}}$=$\frac{\sqrt{5}}{2}$,
因此,該球的體積為V=$\frac{4}{3}$π•($\frac{\sqrt{5}}{2}$)3=$\frac{5\sqrt{5}π}{6}$.
故選:D.
點評 本題給出一個正六棱柱,求它的外接球的體積,著重考查了球的內(nèi)接多面體和球體積公式等知識點,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{10}}{2}$ | B. | $\sqrt{10}$ | C. | $\frac{3}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ±1 | B. | $±\frac{{\sqrt{2}}}{2}$ | C. | $±\sqrt{2}$ | D. | $±\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{2\sqrt{2}}{3}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com