11.已知數(shù)列{an}是等差數(shù)列,首項(xiàng)為3,公差為2.
(1)求數(shù)列{an}的前n項(xiàng)和Sn
(2)求和:$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.

分析 (1)直接由等差數(shù)列的前n項(xiàng)和公式求數(shù)列{an}的前n項(xiàng)和Sn;
(2)由$\frac{1}{{S}_{n}}=\frac{1}{{n}^{2}+2n}=\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,利用裂項(xiàng)相消法求$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$.

解答 解:(1)∵數(shù)列{an}是等差數(shù)列,首項(xiàng)為3,公差為2,
∴${S}_{n}=n{a}_{1}+\frac{n(n-1)d}{2}=3n+\frac{2n(n-1)}{2}={n}^{2}+2n$,
(2)∵$\frac{1}{{S}_{n}}=\frac{1}{{n}^{2}+2n}=\frac{1}{n(n+2)}=\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴$\frac{1}{{S}_{1}}$+$\frac{1}{{S}_{2}}$+…+$\frac{1}{{S}_{n}}$=$\frac{1}{2}(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+…+\frac{1}{n}-\frac{1}{n+2})$
=$\frac{1}{2}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{3}{4}-\frac{2n+3}{2(n+1)(n+2)}$.

點(diǎn)評 本題考查等差數(shù)列的前n項(xiàng)和,訓(xùn)練了裂項(xiàng)相消法求數(shù)列的和,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)是R上的偶函數(shù),若對于x≥0,都有f(x+2)=f(x),且當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),則f(-2014)+f(2015)的值為( 。
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(n,$\frac{{S}_{n}}{n}$)在直線y=$\frac{1}{2}$x+$\frac{11}{2}$上.?dāng)?shù)列{bn}滿足bn+2-2bn+1+bn=0(n∈N*),且b3=11,前9項(xiàng)和為153.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)設(shè)cn=$\frac{3}{(2{a}_{n}-11)(2_{n}-1)}$,數(shù)列{cn}的前n項(xiàng)和為Tn,求Tn及使不等式Tn<$\frac{k}{2014}$對一切n都成立的最小正整數(shù)k的值;
(3)設(shè)f(n)=$\left\{\begin{array}{l}{{a}_{n}(n=2l-1,l∈{N}^{*})}\\{_{n}(n=2l,n∈{N}^{*})}\end{array}\right.$問是否存在m∈N*,使得f(m+15)=5f(m)成立?若存在,求出m的值; 若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知復(fù)數(shù)z滿足|z|=2,且ω=z2-z+4,試求|ω|的最值及取得最值時(shí)的復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知f(cosx)=2cos2x,則f(sin525°)等于( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}-3x+4,x≥1}\\{lo{g}_{2}(1-x),x<1}\end{array}\right.$,則f(f(-1))等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知有一條拋物線${y}^{2}=\frac{8e}{3}x$,且在其上存在三點(diǎn)A,B,D,且三角形ABD的重心恰好為拋物線的焦點(diǎn),則當(dāng)三角形ABD面積為最大時(shí),三角形的三條邊與x軸交于兩點(diǎn),記橫坐標(biāo)較大的點(diǎn)的橫坐標(biāo)為m,且記函數(shù)f(x)=xlnx;g(x)=k[k∈[-m,+∞)].
(1)若f(x)=g(x)這組方程存在兩根x1,x2,試求x1x2的取值范圍.
(2)在(1)的條件下試求x1+x2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖所示,已知在五棱錐P-ABCDE底面ABCDE為凸五邊形,AE=DC=2,AB=BC=3,DE=1,∠EAB=∠BCD=∠CDE=∠DEA=120°,F(xiàn)為AE上的點(diǎn),且AF=$\frac{3}{2}$,平面PAE與底面ABCDE垂直.
求證:(1)BC∥平面PAE;(2)PA⊥FC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.某種“籠具”由內(nèi),外兩層組成,無下底面,內(nèi)層和外層分別是一個(gè)圓錐和圓柱,其中圓柱與圓錐的底面周長相等,圓柱有上底面,制作時(shí)需要將圓錐的頂端剪去,剪去部分和接頭忽略不計(jì),已知圓柱的底面周長為24πcm,高為30cm,圓錐的母線長為20cm.
(1)求這種“籠具”的體積(結(jié)果精確到0.1cm3);
(2)現(xiàn)要使用一種紗網(wǎng)材料制作50個(gè)“籠具”,該材料的造價(jià)為每平方米8元,共需多少元?

查看答案和解析>>

同步練習(xí)冊答案